2023年 05期

环丙沙星对短程硝化-厌氧氨氧化工艺脱氮效能的影响

Effects of Ciprofloxacin on Operation Efficiency of Partial Nitritation-Anammox Process

摘要(Abstract):

为了研究不同浓度的氟喹诺酮类抗生素环丙沙星对短程硝化-厌氧氨氧化工艺的脱氮效能的影响,采用连续流式反应器进行分阶段长期实验;采用紫外分光光度法、高效液相色谱法及三维荧光光谱法,对不同阶段反应 器的脱氮效能、环丙沙星去除率及可溶性微生物产物荧光特性进行表征。结果表明:当环丙沙星的质量浓度为0.1mg/L时,反应器出水硝态氮的质量浓度由28.71mg/L增至44.28mg/L,一段时间后恢复稳定;反应器对环丙沙星的耐药性逐渐增强,恢复稳定期不断缩短;环丙沙星能够改变微生物物种丰富度和多样性以及各属的相对丰度。

关键词(KeyWords): 生物脱氮;短程硝化-厌氧氨氧化工艺;环丙沙星;微生物群落结构;毒性评价

基金项目(Foundation): 国家自然科学基金项目(52270071)

作者(Author): 许会学,薛晓东,司光超,张馨文,冯锐,魏东

DOI: 10.13349/j.cnki.jdxbn.20230327.001

参考文献(References):

[1] HUANG L, XU Y B, XU J X, et al. Antibiotic resistance genes(ARGs) in duck and fish production ponds with integrated or non-integrated mode[J]. Chemosphere, 2017,168:1107.

[2] LI H Y, YAO H, LIU T, et al. Achieving simultaneous nitrogen and antibiotic removal in one⁃stage partial nitritation-anammox(PN/A) process[J]. Environment International,2020,143:105987.

[3] 唐琳钦,覃容华,叶紫裕,等.厌氧氨氧化过程毒性物质的胁迫及其活性研究[J].水处理技术,2021,47(7):25.

[4] WEST B M, LIGGIT P, CLEMANS D L, et al. Antibiotic resist⁃ance, gene transfer, and water quality patterns observed in waterways near CAFO farms and wastewater treatment facilities[J]. Water, Air,&Soil Pollution,2011,217(1/2/3/4):43.

[5] 金燕琴.高效液相色谱法测定盐酸环丙沙星的含量[J].中国实用医药,2011,6(8):41.

[6] 武原原,李姗姗,吴淑妍,等.Ni2+和金霉素共存对序批式反应器性能、微生物活性及其微生物群落的影响[J].中国海洋大学学报(自然科学版),2021,51(10): 89.

[7] HAN F, ZHANG M R, SHANG H G, et al. Microbial community succession, species interactions and metabolic pathways of sulfur⁃based autotrophic denitrification system in organic⁃limited nitrate wastewater[J]. Bioresource Technology,2020,315:123826.

[8] YAO Z B, CAI Q, ZHANG D J, et al. The enhancement of completely autotrophic nitrogen removal over nitrite (CANON) by N2 H4 addition[J]. Bioresource Technology,2013,146:591 .

[9] CHEN C J, JING Y, LIU J J, et al. The structure of anammox granular sludge under varying long⁃term organic matter stress: performance, physiochemical and microbial community[J]. Journal of Cleaner Production, 2021,323:129117.

[10] DANG B T, BUI X T, ITAYAMA T, et al. Microbial community response to ciprofloxacin toxicity in sponge membrane bioreactor[J]. Science of the Total Environment,2021,773:145041.

[11] 孙蔚青,胡学伟,宁平,等.溶解性微生物产物在水处理领域中的研究进展[J]. 水处理技术,2011,37(12):5-9.

[12] BOERO V J, ECKENFELDER W W, BOWERS A R. Soluble microbial product formation in biological systems[J]. Water Science and Technology, 1991, 23:1067-1076.

[13] 娄仕高,鲁涛.ROS在抗生素致死效应中的作用机制及其应用[J].生命科学,2017,29(11):1113- 1118.

[14] DWYER D J, KOHANSKI M A, COLLINS J J. Role of reactiveoxygen species in antibiotic action and resistance[J]. Current Opinion in Microbiology,2009,12(5):482-489.

[15] CHEN Y, WANG Z P, LIU L L, et al. Stress⁃responses of microbial population and activity in activated sludge under longterm ciprofloxacin exposure[J].Journal of Environmental Management, 2021,281:111896.

[16] 鲍林林,李晓珍,李孙林,等.联氨对HABR全程自养脱氮系统的影响[J].中国给水排水,2020,36(5):26-32.

[17] KIM D, NGUYEN L N, OH S. Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge [J]. Environmental Geochemistry and Health, 2020,42(6):1531 - 1541 .