参考文献(References):
[1] 胡鸿钧,魏印心.中国淡水藻类:系统、生态及分类[M].北京:科学出版社,2006:3-10.
[2] XIN X Y, HUANG G, ZHANG B Y. Review of aquatic toxicity of pharmaceuticals and personal care products to algae[ J]. Journal of Hazardous Materials, 2021,410:124619.
[3] 周怡彤,李清雪,王斌,等.太湖流域西北部地表水中农药的污染特征及生态风险评价[J].生态毒理学报,2020,15(3):171-183.
[4] 黄晓丽,高磊,黄丽,等.哈尔滨地区养殖池塘中除草剂类农药残留及分布特征[J]. 水产学杂志,2019,32(2):37-43.
[5] LI H X, JIANG W W, PAN Y L, et al. Occurrence and partition of organochlorine pesticides(OCPs) in water,sediment ,and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China[J]. Marine Pollution Bulletin, 2021 ,162:111906.
[6] 徐志华,唐冬梅,刘超,等.SPE⁃LC/MS/MS法测定包装饮用水中30种有机磷农药残留[J].现代食品,2020(6):191-197.
[7] ZHANG B, XU L, HU Q P, et al. Occurrence, spatiotemporal distribution and potential ecological risks of antibiotics in Dongting Lake, China[J]. Environmental Monitoring and Assessment, 2020,192(12):804.
[8] NÖDLER K, LICHA T, BARBIERI M, et al. Evidence for the microbially mediated abiotic formation of reversible and non⁃rever⁃sible sulfamethoxazole transformation products during denitrification[J]. Water Research, 2012,46(7):2131-2139.
[9] ZHANG L L, SHEN L N, QIN S, et al. Quinolones antibiotics in the Baiyangdian Lake, China:occurrence, distribution ,predicted no⁃effect concentrations(PNECs) and ecological risks by three methods[J]. Environmental Pollution, 2020,256:113458.
[10] YAN M T, XU C, HUANG Y M, et al. Tetracyclines, sulfona⁃mides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 631/632:840-848.
[11] HANNA N, SUN P, SUN Q, et al. Presence of antibiotic resi⁃dues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and eco⁃ logical and human risk [J]. Environment International, 2018,114:131-142.
[12] PAUMELLE M, DONNADIEU F, JOLY M, et al. Effects of sul⁃fonamide antibiotics on aquatic microbial community composition and functions[J]. Environment International, 2021,146:106198.
[13] CEDERGREEN N, RASMUSSEN J J. Low dose effects of pesti⁃cides in the aquatic environment[J]. ACS Symposium Series ,2017,1249:167-187.
[14] STALEY Z R, HARWOOD V J, ROHR J R. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosys⁃836.
[15] ULRICH U, PFANNERSTILL M, OSTENDORP G, et al. Omni⁃present distribution of herbicides and their transformation products in all water body types of an agricultural landscape in the North German Lowland[ J] . Environmental Science and Pollution Research, 2021, 28: 44183-44199.
[16] MARSHALL P A, EDGAR G J. The effect of the Jessica grounding on subtidal invertebrate and plant communities at the Galápagos wreck site[J] . Marine Pollution Bulletin , 2003 , 47(7/ 8) : 284-295.
[17] SABATER S, TIMONER X, BORREGO C, et al. Stream biofilm responses to flow intermittency: from cells to ecosystems [J].Frontiers in Environmental Science, 2016,4:00014.
[18] ERIKSSON K M, JOHANSSON C H, FIHLMAN V, et al. Longterm effects of the antibacterial agent triclosan on marine periphyton communities[J]. Environmental Toxicology and Chemistry,2015,34(9):2067-2077.
[19] LOZANO V L, VINOCUR A, SABIO GARCIA C A, et al. Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and periphyton communities: a microcosms approach[J].Ecotoxicology and Environmental Safety,2018,148:1010- 1019.
[20] HERNÁNDEZ⁃GARCÍA C, MARTÍNEZ⁃JERÓNIMO F. Multistressor negative effects on an experimental phytoplankton community:the case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae[J]. Science of the Total Environment,2020,717:137186.
[21] FRESIA P, ANTELO V, SALAZAR C, et al. Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters[J]. Microbiome,2019,7(1):35.
[22] ZHOU Z G, ZHANG Z Y, FENG L, et al. Adverse effects of levofloxacin and oxytetracycline on aquatic microbial communities[J]. Science of the Total Environment, 2020,734:139499.
[23] WIJEWARDENE L, WU N C, QU Y M, et al. Influences of pesticides,nutrients,and local environmental variables on phytoplankton communities in lentic small water bodies in a German lowland agricultural area[J]. Science of the Total Environment,2021,780:146481.
[24] PEREIRA A S, DÂMASO⁃RODRIGUES M L, AMORIM A, et al. Aquatic community structure in Mediterranean edge⁃offield waterbodies as explained by environmental factors and the presence of pesticide mixtures[J].Ecotoxicology, 2018,27:661-674.
[25] GREGORIO V, BÜCHI L, ANNEVILLE O, et al. Risk of herbicide mixtures as a key parameter to explain phytoplankton fluctuation in a great lake: the case of Lake Geneva, Switzerland[J] .Ecotoxicology,2012,21(8):2306-2318.
[26] SEGUIN F, LEBOULANGER C, RIMET F, et al. Effects of atrazine and nicosulfuron on phytoplankton in systems of increasing complexity[J]. Archives of Environmental Contamination and Toxicology,2001,40(2):198-208.
[27] PURVIS A, HECTOR A. Getting the measure of biodiversity[J]. Nature,2000,405:212-219.
[28] 贺金生,方精云,马克平,等.生物多样性与生态系统生产力:为什么野外观测和受控实验结果不一致? [J]. 植物生态学报,2003,27(6):835-843.
[29] PAN Y, DONG J Y, WAN L L, et al. Norfloxacin pollution alters species composition and stability of plankton communities[J]. Journal of Hazardous Materials,2020,385:121625.
[30] MA J, CHEN J, WANG P, et al. Comparative sensitivity of eight freshwater phytoplankton species to isoprocarb, propargite, flu⁃ metralin and propiconazole[J]. Polish Journal of Environmental Studies,2008,17(4):525-529.
[31] LU T, ZHU Y C, KE M J, et al. Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin[J]. Environment International,2019,126:268-278.
[32] KUHNEL D, NICKEL C. The OECD expert meeting on ecotoxicology and environmental fate:towards the development of improved OECD guidelines for the testing of nanomaterials[J]. Science of the Total Environment,2014,472:347-353.
[33] WAN L , WU Y X, DING H J, et al. Toxicity , biodegradation, and metabolic fate of organophosphorus pesticide trichlorfon on the freshwater algae Chlamydomonas reinhardtii[J]. Journal of Agricultural and Food Chemistry,2020,68(6):1645-1653.
[34] 聂湘平,王翔,陈菊芳,等.三氯异氰尿酸与盐酸环丙沙星对蛋白核小球藻的毒性效应[J].环境科学学报,2007,27(10):1694-1701.
[35] XU D M, XIAO Y P, PAN H, et al. Toxic effects of tetracycline and its degradation products on freshwater green algae[J]. Ecotoxicology and Environmental Safety, 2019, 174:43-47.
[36] 王作铭,陈军,陈静,等.地表水中抗生素复合残留对水生生物的毒性及其生态风险评价[J]. 生态毒理学报,2018,13(4):149-160.
[37] 徐冬梅,王艳花,饶桂维.四环素类抗生素对淡水绿藻的毒性作用[J]. 环境科学,2013,34(9):3386-3390.
[38] GONZÁLEZ⁃PLEITER M, GONZALO S, RODEA⁃PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment[J]. Water Research, 2013,47(6):2050-2064.
[39] ROBINSON A A, BELDEN J B, LYDY M J. Toxicity of fluoro-quinolone antibiotics to aquatic organisms[J]. Environmental Toxicology and Chemistry, 2005,24(2):423-430.
[40] GORENOGLU E, AYDIN E, TOPUZ E, et al. Effect of triclosan and its photolysis products on marine bacterium V. fischeri and freshwater alga R. subcapitata[J]. Journal of Environmental Management,2018,211:218-224.
[41] 王滔,班龙科,张瑾,等.三嗪类农药复合污染物对蛋白核小球藻的联合毒性作用评估[J]. 农业环境科学学报,2020,39(3):482-495.
[42] XI J J, SHAO J, WANG Y, et al. Acute toxicity of triflumizole to freshwater green algae Chlorella vulgaris [J].Pesticide Biochemistry and Physiology, 2019,158:135-142.
[43] RALSTON⁃HOOPER K, HARDY J, HAHN L, et al. Acute and chronic toxicity of atrazine and its metabolites deethylatrazine and deisopropylatrazine on aquatic organisms[J]. Ecotoxicology, 2009,18(7):899-905.
[44] 宗照飞,宋伟华,张燕,等. 12 种除草剂对羊角月芽藻的毒性研究[J]. 农药科学与管理,2017,38(2):25-29.
[45] 李凤超,曹卫荣,王胜波,等.除草剂莠去津对斜生栅藻种群的毒性效应[J]. 安徽农业科学,2008,36(17):7427-7428.
[46] VENDRELL E, FERRAZ D G D B, SABATER C, et al. Effect of glyphosate on growth of four freshwater species of phytoplankton: a microplate bioassay[J]. Bulletin of Environmental Contamination and Toxicology,2019,82(5):538-542.
[47] CHEN J Q, GUO R X. Access the toxic effect of the antibiotic cefradine and its UV light degradation products on two freshwater algae[J]. Journal of Hazardous Materials,2012,209/210:520-523.
[48] 张晓晗,万甜,程文,等.喹诺酮类和磺胺类抗生素对绿藻生长的影响[J].水资源与水工程学报,2018,29(4):115-120.
[49] 农琼媛,覃礼堂,莫凌云,等.抗生素与三唑类杀菌剂混合物对羊角月牙藻的长期毒性相互作用研究[J]. 生态毒理学报,2019,14(4):140-149.
[50] YE J, HUANG C, SHANG A H, et al. Characteristics of toxin production and release in Microcystis aeruginosa exposed to three tetracycline antibiotics[J]. Environmental Science and Pollution Research, 2020, 27(14):16798-16805.
[51] BRYAN A K, ENGLER A, GULATI A, et al. Continuous and longterm volume measurements with a commercial Coulter counter[J]. PLoS ONE,2012,7(1): e29866.
[52] SOUSA C A, SOARES H M V M, SOARES E V. Toxic effects of nickel oxide ( NiO) nanoparticles on the freshwater alga Pseudokirchneriella subcapitata[J]. Aquatic Toxicology, 2018,204:80-90.
[53] MACHADO M D, SOARES E V. Impact of erythromycin on a non⁃target organism: cellular effects on the freshwater microalga Pseudokirchneriella subcapitata [J]. Aquatic Toxicology, 2019,208:179-186.
[54] SCHAAP A, DUMON J, DEN TOONDER J. Sorting algal cells by morphology in spiral microchannels using inertial microfluidics[J]. Microfluidics and Nanofluidics, 2016,20(9):125.
[55] ZHANG F W, YAO X F, SUN S A, et al. Effects of mesotrione on oxidative stress, subcellular structure, and membrane integrity in Chlorella vulgaris[J]. Chemosphere, 2020,247:125668.
[56] ZHAO F F, XIANG Q Q, ZHOU Y, et al. Evaluation of the toxicity of herbicide topramezone to Chlorella vulgaris:oxidative stress, cell morphology and photosynthetic activity[J]. Ecotoxi⁃cology and Environmental Safety,2017,143:129-135.
[57] MARTÍNEZ⁃RUIZ E B, MARTÍNEZ⁃JERÓNIMO F. Exposure to the herbicide 2,4-D produces diffierent toxic effects in two different phytoplankters :a green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa)[J]. Science of the Total Environment, 2018,619/620:1566-1578.
[58] 张迪,厉圆,沈忱思,等.金霉素及其异构体降解产物对斜生栅藻的毒性效应研究[J]. 农业环境科学学报,2019,38(4):756-764.
[59] TRETIACH M, PICCOTTO M, BARUFFO L. Effects of ambient NOx on chlorophyll a fluorescence in transplanted Flavoparmelia caperata (Lichen) [J]. Environmental Science&Technology, 2007, 41(8): 2978-2984.
[60] XIN X Y, HUANG G H, LIU X, et al. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: a single cell view using synchrotron⁃based Fourier transform infra⁃ red spectromicroscopy[J]. Environmental Pollution, 2017,226:12-20.
[61] GUO R X , CHEN J Q. Phytoplankton toxicity of the antibiotic chlortetracycline and its UV light degradation products[J]. Chemosphere, 2012,87(11):1254-1259.
[62] KUMAR K S, DAHMS H⁃U, LEE J⁃S, et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence[J]. Ecotoxicology and Environmental Safety,2014,104:51-71.
[63] LIU B Y, NIE X P, LIU W Q , et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum[J]. Ecotoxicology and Environmental Safety,2011,74(4):1027-1035.
[64] ESPERANZA M, CID Á, HERRERO CI, et al. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: screening cytotoxicity and genotoxicity endpoints[J]. Aquatic Toxicology, 2015,165:210-221.
[65] TANG J, WU Y H, ESQUIVEL-ELIZONDO S, et al. How microbial aggregates protect against nanoparticle toxicity[J]. Trends in Biotechnology, 2018,36(11):1171-1182.
[66] LI J P, MIN Z F, LI W, et al. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: toxicity and removal mechanism[J]. Ecotoxicology and Environmental Safety, 2020,191:110156.
[67] ZHAO P C, WANG Y M, LIN Z Y, et al. The alleviative effect of exogenous phytohormones on the growth, physiology and gene expression of Tetraselmis cordiformis under high ammonia⁃nitrogen stress[J]. Bioresource Technology, 2019,282 :339-347.
[68] WU L, QIU Z H, ZHOU Y, et al. Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa[J]. Aquatic Toxicology,2016,178:72-79.
[69] XIA B, SUI Q, SUN X M, et al. Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgaris[J]. Journal of Hazardous Materials,2018,346:1-9.
[70] ZHOU X D, JIANG X C, GAO S, et al. Effects of oxytetracycline dihydrate and sulfamethoxazole on Microcystis aeruginosa and Chlamydomonas microsphaera[J]. Journal of Oceanology and Limnology,2021,39:160-172.
[71] TAO M T, BIAN Z Q, ZHANG J, et al. Quantitative evaluation and the toxicity mechanism of synergism within three organophosphorus pesticide mixtures to Chlorella pyrenoidosa[J]. Environmental Science: Processes&Impacts, 2020,22(10):2095-2103.
[72] AMBROSONE A, ROOPIN M, PELAZ B, et al. Dissecting common and divergent molecular pathways elicited by CdSe/ZnS
quantum dots in freshwater and marine sentinel invertebrates[J]. Nanotoxicology,2017,11(2):289-303.
[73] MESNAGE R, BISERNI M, BALU S, et al. Integrated transcriptomics and metabolomics reveal signatures of lipid metabolism dysregulation in HepaRG liver cells exposed to PCB 126[J]. Archives of Toxicology, 2018,92(8):2533-2547.
[74] JIANG Y H, LIU Y, ZHANG J. Mechanisms for the stimulatory effects of a five⁃component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels[J]. Journal of Hazardous Materials, 2021,406:124722.
[75] XU S J, LIU Y, ZHANG J, et al. Proteomic mechanisms for the combined stimulatory effects of glyphosate and antibiotic contaminants on Microcystis aeruginosa[J]. Chemosphere, 2021,267:129244.