2023年 05期

钝化铁硅铝合金吸波材料的吸波性能

Microwave Absorption Performance of Passivated Fe-Si-Al Alloy Materials


摘要(Abstract):

为了研究铁硅铝合金颗粒表面钝化壳层对吸波性能的影响,采用纯氧热处理法在不同温度下对铁硅铝合金颗粒进行原位钝化,对钝化前、后粒子的微观结构、壳层成分、电磁性能和吸波性能进行表征与分析。结果表明: 当热处理温度为500 ℃ 时,合金粒子表层形成以Al2O3·SiO2为主要成分的薄壳层;钝化合金颗粒不仅保持良好的软磁性能,而且电阻率显著增大,复介电常数减小约50%,复磁导率稍有增大,导致吸波材料的阻抗匹配和吸收损耗能力显著增强;利用钝化铁硅铝合金吸收剂以质量分数为66.7%的填充率所制得厚度为2mm的吸波材料具有在频率为0.9~2.06GHz内吸收损耗大于6dB的吸收性能,频率1.35GHz处最大吸收损耗为7.5dB。

关键词(KeyWords): 吸波材料;铁硅铝合金;钝化; 阻抗匹配;吸收损耗

基金项目(Foundation): 国家自然科学基金项目(52071239 , 51521001)

作者(Author): 王宇航,李维

DOI: 10.13349/j.cnki.jdxbn.20230718.002

参考文献(References):

[1] JIA Z R, LAN D, LIN K J, et al. Progress in low-frequency microwave absorbing materials[J]. Journal of Materials Science:Materials in Electronics, 2018,29(20):17122.

[2] NAN C W, BICHURIN M I, DONG S, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions[J]. Journal of Applied Physics, 2008, 103(3):031101.

[3] SCOTT J F. Applications of modern ferroelectrics[J]. Science, 2007,315:954.

[4] ROZANOV K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000,48(8):1230.

[5] MASUMOTO H. On a new alloy“Sendust”and its magnetic and electric properties[J]. Journal of the Japan Institute of Metals, 1937,1:127.

[6] ABE M, TAKEDA Y, MURAKAMI T, et al. Magnetic propertiesof commercially produced Fe-6.5wt% Si sheet[J. Journal of Materials Engineering, 1989 ,11:106.

[7] YAO K F, SHI L X, CHEN S Q, et al. Research progress and aptalline alloys[J]. Acta Physica Sinica, 2018,67(1):016101 .

[8] ZUO B, SARASWATI N, SRITHARAN T, et al. Production and annealing of nanocrystalline Fe-Si and Fe-Si-Al alloy powders[J]. Materials Science and Engineering: A, 2004,371(1/2):210.

[9] WALSER R K, WIN W, VALANJU M P. Shape-optimized ferrolity[J]. IEEE Transactions on Magnetics, 1998,34(4):1390.

[10] GUO X L, YAO Z J, LIN H Y, et al. Epoxy resin addition on the microstructure, thermal stability and microwave absorption properties of core-shell carbonyl iron @ epoxy composites[J]. Journal of Magnetism and Magnetic Materials, 2019,485:244.

[11] KIMURA S, KATO T, HYODO T, et al. Electromagnetic wave absorption properties of carbonyl iron⁃ferrite/PMMA composites fabricated by hybridization method[J]. Journal of Magnetism and Magnetic Materials, 2007,312(1):181 .

[12] SONG Z J, DENG L J, XIE J L, et al. Synthesis, dielectric, and microwave absorption properties of flake carbonyl iron particles coated with nanostructure polymer[J]. Surface and Interface Analysis, 2014,46(2):77.

[13] FAN X A, WANG J, WU Z Y, et al. Core-shell structured FeSiAl/SiO2 particles and Fe3 Si/Al2O3 soft magnetic composite cores with tunable insulating layer thicknesses[J]. Materials Science and Engineering: B, 2015,201:79.

[14] LUO F, FAN X A, LUO Z G, et al. Microstructure, formation mechanism and magnetic properties of Fe1.8 2Si0. 18 @ Al2O3 soft magnetic composites[J]. Journal of Magnetism and Magnetic Materials, 2020,493:165744.

[15] LUO Z G, FAN X A, HU W T, et al. Properties of Fe2 SiO4/SiO2 coated Fe-Si soft magnetic composites prepared by sinteringism and Magnetic Materials, 2020,499:166278.

[16] DUTTA P, PANDEY S K. Understanding the temperature⁃ and pressure-depend electronic properties of FeSi:DFT+DMFT study[J]. Europhysics Letters ,2020,132(3):37003.

[17] BOESONO Ir, ERNST G J, LEMMENS M C, et al. A Zeneric Solid State Physics, 1967,19(1):107.

[18] MIRANI H V M , MAASKANT P. Diffusion of Si in Fe/Si containing 8 to 11at% Si[J]. Physica Status Solidi A : Applications and Materials Science, 1972,14(2):521 .

[19] BROMMER P E, HOOFT H A. Magnetic Zener relaxation in iron-silicon alloys[J]. Physics Letters A, 1967,26(1):52-53.

[20] BARIN I. Thermochemical data of pure substances[M]. Weinheim: VCH,1989.

[21] LUO Z G, FAN X A, HU W T, et al. High⁃performance Fe-Si insulating (IMI) layer[J]. Journal of Magnetism and Magnetic Materials, 2020,496:165937.

[22] BROSSEAU C, BEROUAL A, BOUDIDA A. How do shape anisotropy and spatial orientation of the constituents affect the permittivity of dielectric heterostructures[J]. Journal of Applied Physics, 2000,88(12):7278.

[23] GUAN Z J, WANG Z Q, JIANG J T, et al. Flaky FeSi particleswith tunable size, morphology and microstructure developing for high⁃efficiency and broadband absorbing materials[J]. Journal of Magnetism and Magnetic Materials, 2021,527:167800.

[24] XU H B, BIE S W, JIANG J J, et al. Electromagnetic and microwave absorbing properties of the composites containing flaky FeSiAl powders mixed with MnO2 in 1-18 GHz[J]. Journal of Magnetism and Magnetic Materials, 2016,401:567.

[25] ZHANG W Q, XU Y G, YUAN L M, et al. Microwave absorption and shielding property of composites with FeSiAl and carbonous materials as filler[J]. Journal of Materials Science & Technology, 2012,28(10):913.

[26] ZHOU T D, ZHOU P H, LIANG D F, et al. Structure and electromagnetic characteristics of flaky FeSiAl powders made by meltquenching[J]. Journal of Alloys and Compounds, 2009,484(1/2):545.