2023年 04期

氯离子侵蚀环境中衬砌管片服役寿命的贝叶斯动态评估

Bayesian Dynamic Evaluation on Service Life of Lining Segments in Chloride Ion Erosion Environment


摘要(Abstract):

为了解决目前大多数衬砌管片服役寿命评估结果过于保守以及隧道寿命预测不准确的问题,提出一种氯离子侵蚀环境中衬砌管片服役寿命的贝叶斯动态评估方法;通过模拟计算衬砌管片可靠度,考虑保护层厚度、混凝土抗压强度和钢筋抗拉强度的不确定性,实现时变状态下氯离子侵蚀导致衬砌管片承载力减小的全过程描述,并利用现有监测数据完成对衬砌管片服役寿命进行动态更新。结果表明:将所提出的方法应用于某盾构隧道工程,当仅考虑氯离子浓度作为寿命终点时,保守估计衬砌管片的服役寿命仅为37 a;在氯离子侵蚀环境中,理论计算和模拟计算显示衬砌管片会在第92年因可靠度不足而达到寿命终点;利用现有观测数据,根据贝叶斯公式对理论数据进行动态更新,衬砌管片可靠度在第88年提前失效,隧道寿命缩减4%,在实际应用中需要提前加强防护以确保隧道能够达到设定年限。

关键词(KeyWords): 盾构隧道;衬砌管片服役寿命;贝叶斯动态评估;氯离子侵蚀;隧道寿命预测

基金项目(Foundation): 国家自然科学基金项目(51809115);; 山东省自然科学基金项目(ZR2019QEE003);; 中国博士后科学基金项目(2019M652512)

作者(Author): 邢科航,冯现大,卢彬,鲁瑞

DOI: 10.13349/j.cnki.jdxbn.20230425.001

参考文献(References):

[1] 周建民.基于可靠性分析的混凝土结构耐久性优化设计[J].铁道学报,2000,22(增刊1):57.

[2] 刘艳军.盾构隧道结构耐久性研究[J].四川建筑科学研究,2012,38(1):77.

[3] 王睿,王信刚.氯离子侵蚀环境下混凝土结构耐久性评估与寿命预测模型[J].南昌大学学报(理科版),2013,37(3):281.

[4] CHEN J R,SONG X C,ZHAO T J,et al.Service life prediction of lining concrete of subsea tunnel under combined compressive load and carbonation[J].Journal of Wuhan University of Tech-nology (Materials Science),2010,25(6):1061.

[5] 彭浩,熊鹏,陶永虎.基于不同浓度CO2环境下的公路隧道寿命预测模型[J].水利规划与设计,2021(11):95.

[6] STAMBAUGH N D,BERGMAN T L,SRUBARW V III,et al.Numerical service-life modeling of chloride-induced corrosion in recycled-aggregate concrete[J].Construction and Building Materials,2018,161:236.

[7] 吴彰钰,余红发,麻海燕,等.基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J].材料导报,2019,33(2):264.

[8] YANG C Y,LI L,LI J P.Service life of reinforced concrete seawalls suffering from chloride attack:theoretical modelling and analysis[J].Construction and Building Materials,2020,263:120172.

[9] 刘强,黄绵松,金峰.临海隧道混凝土结构耐久性和使用寿命研究[J].北京交通大学学报,2018,42(6):1.

[10] ALEXANDER M,BEUSHAUSEN H.Durability,service life prediction,and modelling for reinforced concrete structures:review and critique[J].Cement and Concrete Research,2019,122:17.

[11] SRIKANTH I,AROCKIASAMY M.Deterioration models for prediction of remaining useful life of timber and concrete bridges:a review[J].Journal of Traffic and Transportation Engineering (English Edition),2020,7(2):152.

[12] LIANG Y Q,WANG L C.Effect of water-to-cement ratio on service life of reinforced concrete structures in chloride environment[J].Structural Concrete,2021,22(5):2748.

[13] 刘西拉,苗澍柯.混凝土结构中的钢筋腐蚀及其耐久性计算[J].土木工程学报,1990(4):69.

[14] FU X,CHUNG D D L.Effect of corrosion on the bond between concrete and steel rebar[J].Cement and Concrete Research,1997,27(12):1811.

[15] RODRIGUEZ J,ORTEGA L M,CASAL J.Load carrying capacity of concrete structures with corroded reinforcement[J].Construction and Building Materials,1997,11(4):239.

[16] COLLEPARDI M,MARCIALIS A,TURRIZIANI R.Penetration of chloride ions into cementpastes and concrete[J].Journal of the American Ceramic Society,1972,55(10):534.

[17] 孙丛涛.基于氯离子侵蚀的混凝土耐久性与寿命预测研究[D].西安:西安建筑科技大学,2011.

[18] 万小梅.力学荷载及环境复合因素作用下混凝土结构劣化机理研究[D].西安:西安建筑科技大学,2011.

[19] YU H F,TAN Y S,FENG T T.Study of temporal change in chloride diffusion coefficient of concrete[J].ACI Materials Journal,2019,116(1):103.

[20] 陈宣东,陈平,梁秋群,等.钢筋表面氯离子浓度预测实用模型及数值研究[J].硅酸盐通报,2020,39(6):1778.

[21] 余红发,孙伟,麻海燕,等.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,5(3):243.

[22] 江大虎.盾构隧道混凝土管片的耐久性退化规律及其寿命预测[D].南京:南京航空航天大学,2010.

[23] 刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[D].南京:东南大学,2006.

[24] ALONSO C,CASTELLOTE M,ANDRADE C.Chloride thre-shold dependence of pitting potential of reinforcements[J].Electrochimica Acta,2002,47(21):3469.

[25] 宋国栋,赵尚传,付智,等.氯离子临界浓度研究现状与进展[J].公路交通科技(应用技术版),2009,5(7):128.

[26] MAHIMA S,MOORTHI P V P,BAHURUDEEN A,et al.In-fluence of chloride threshold value in service life prediction of reinforced concrete structures[J].SāDHANā,2018,43(7):115-4-115-5.

[27] LUN P Y,LU Z H,ZHANG X G,et al.Experimental study and suggested mathematical model for chloride-induced reinforcement corrosion rate[J].Structures,2021,34:2024-2026.

[28] MUTHULINGAM S,RAO B N.Non-uniform corrosion states of rebar in concrete under chloride environment[J].Corrosion Science,2015,93:270.

[29] 惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997(6):11.

[30] 牛荻涛,王庆霖.一般大气环境下混凝土强度经时变化模型[J].工业建筑,1995(6):37.

[31] 韩兴博,夏永旭,王永东,等.隧道衬砌抗弯承载能力概率劣化模型[J].浙江大学学报(工学版),2019,53(11):2175.

[32] 周海鹰,李立新,陈廷国.地铁隧道衬砌管片承载力试验及计算方法[J].山东大学学报(工学版),2010,40(4):86.

[33] 宋玉香,景诗庭,刘勇.单线电气化铁路隧道衬砌结构目标可靠指标的试算分析[J].岩石力学与工程学报,1999,18(1):46.

[34] FENG X D,JIMENEZ R.Estimation of deformation modulus of rock masses based on Bayesian model selection and Bayesian updating approach[J].Engineering Geology,2015,199:19.

[35] YIN T,ZHU H P.An efficient algorithm for architecture design of Bayesian neural network in structural model updating[J].Computer-aided Civil and Infrastructure Engineering,2020,35(4):354.

[36] MURANO A,ORTEGA J,RODRIGUES H,et al.Updating mechanical properties of two-leaf stone masonry walls through experimental data and Bayesian inference[J].Construction and Building Materials,2021,298:123626.

[37] 张俊芝.服役工程结构可靠性理论及其应用[M].北京:中国水利水电出版社,2007:50.