参考文献(References):
[1] 逄增治,郑修楠,李金屏.全钢子午线轮胎X光图像的缺陷检测研究现状[J].智能系统学报,2019,14(4):793.
[2] 孙虹霞.轮胎X光图像缺陷检测算法研究[D].合肥:中国科学技术大学,2021.
[3] 康宇豪.子午线轮胎胎体帘线缺陷视觉检测方法研究[D].沈阳:沈阳工业大学,2020.
[4] LIN C W,CHEN G,ZHANG Y X,et al.Automatic detection of shoulder bending defects in tire X-ray images[C]//2020 International Conference on Computer Engineering and Application (ICCEA),March 18-20,2020,Guangzhou,China.New York:IEEE,2020:877.
[5] 于向茹,丁健配,李金屏.轮胎帘线交叉重叠缺陷检测[J].济南大学学报(自然科学版),2017,31(6):494.
[6] 逄增治.子午线轮胎X光图像钢丝圈缺陷检测方法研究[D].济南:济南大学,2020.
[7] ZHAO G,QIN S Y.High-precision detection of defects of tire texture through X-ray imaging based on local inverse difference moment features[J].Sensors,2018,18(8):2524.
[8] 林丽红,马铁军,徐培.Gabor变换在轮胎X光图像处理的应用[J].机械与电子,2016,34(4):59.
[9] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,39(6):1137.
[10] REDMON J,FARHADI A.YOLOv3:an incremental improvement[EB/OL].(2018-04-08) [2021-09-27].https://arxiv.org/pdf/1804.02767.pdf.
[11] 崔雪红.基于深度学习的轮胎缺陷无损检测与分类技术研究[D].青岛:青岛科技大学,2018.
[12] 吴则举,焦翠娟,陈亮.基于改进Faster R-CNN的轮胎缺陷检测方法[J].计算机应用,2021,41(7):1939-1946.
[13] CHEN J Y,LI Y W,ZHAO J X.X-ray of tire defects detection via modified faster R-CNN[C]//2019 2nd International Conference on Safety Produce Informatization(ⅡCSPI),November 28-30,2019,Chongqing,China.New York:IEEE,2019:257.
[14] ZHU Q D,AI X T.The defect detection algorithm for tire X-ray images based on deep learning[C]//2018 IEEE 3rd International Conference on Image,Vision and Computing (ICIVC),June 27-29,2018,Chongqing,China.New York:IEEE,2018:138.
[15] 陈梦焱.基于X光图像的轮胎缺陷检测算法研究[D].上海:上海交通大学,2020.
[16] 陈亮,白文涛.基于Efficient-Net的轮胎X光片缺陷检测技术研究[J].沈阳理工大学学报,2021,40(2):8.
[17] TAN M X,LE Q V.EfficientNet:rethinking model scaling for convolutional neural networks[EB/OL].(2020-09-11) [2021-09-27].https://arxiv.org/pdf/1905.11946.pdf.
[18] WANG R,GUO Q,LU S M,et al.Tire defect detection using fully convolutional network[J].IEEE Access,2019(7):43502.
[19] 王任.基于深度卷积网络的轮胎缺陷检测方法研究[D].济南:山东财经大学,2020.
[20] 林佳佳,吴则举,刘中冬.轮胎X射线0号带束层接头检测定位量化算法的研究[J].科学技术与工程,2016,16(25):121.
[21] 林佳佳.基于轮胎X光图像的0号带束层缺陷检测算法研究[D].青岛:青岛科技大学,2017.
[22] 张元刚,刘中华.基于GLCM算法的轮胎0°带束层接头缺陷检测[J].橡胶工业,2018,65(12):1402.
[23] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23) [2021-09-27].https://arxiv.org/pdf/2004.10934.pdf.
[24] GLENN J,ALEX S,JIRKA B,et al.Ultralytics/YOLOv5:v5.0-YOLOv5-P6 1280 models,AWS,Supervisely and YouTube integrations[EB/OL].(2021-04-11) [2021-09-27].https://zenodo.org/record/4679653.
[25] TAN M X,PANG R M,LE Q V.EfficientDet:scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),June 13-19,2020,Seattle,WA,USA.New York:IEEE,2020:19874970.