2023年 03期

基于细菌觅食优化多核支持向量机的作物生长环境控制

Crop Growth Environment Control Based on Bacterial Foraging Optimization Multi-kernel Support Vector Machine


摘要(Abstract):

为了解决大规模生长环境变量所带来的计算复杂度较高的问题,采用细菌觅食优化多核支持向量机算法对农作物产量进行预测分析,从而实现作物生长环境的最优控制;首先,采用高斯核函数、多项式核函数和Sigmoid核函数组合方式建立多核支持向量机,其输入为作物生长环境,采用细菌觅食优化算法优化核函数关键参数;其次,利用多核函数的参数构建菌群进行训练,设置作物产量作为细菌觅食优化算法适应度;最后,通过菌群位置更新优化后的最优核函数参数进行多核支持向量机优化求解,获得空气温度、湿度,土壤温度、湿度等生长环境特征数据。结果表明,选择合适的多核函数组合,并合理设置细菌觅食优化算法的引力和斥力系数、迁徙概率阈值等参数,能够获得最高产量所对应的作物生长环境特征数据。

关键词(KeyWords): 智慧农业;多核支持向量机;细菌觅食优化算法;生长环境

基金项目(Foundation):国家自然科学基金项目(71773033);; 2020年度广西高校中青年教师科研基础能力提升项目(2020KY14025);; 2019年度广西民族地区文化建设与社会治理研究中心研究项目(2019YJJD0008)

作者(Author): 蔡桂全,陶建平

DOI: 10.13349/j.cnki.jdxbn.20230330.001

参考文献(References):

[1] 吴文福,张娜,李姝峣,等.5T智慧农场管理系统构建与应用探索[J].农业工程学报,2021,37(9):340.

[2] 庞桂斌,张立志,王通,等.微咸水灌溉作物生理生态响应与调节机制研究进展[J].济南大学学报(自然科学版),2016,30 (4):250.

[3] ZHANG Y,SWAMINATHAN J M.Improved crop productivity through optimized planting schedules[J].Manufacturing & Service Operations Management,2020,22(6):1165.

[4] 魏晓奕,张佩,徐进,等.油菜产量因素预测方法研究[J].江苏农业科学,2021,49(7):89.

[5] 赫晓慧,罗浩田,乔梦佳,等.基于CNN-RNN网络的中国冬小麦估产[J].农业工程学报,2021,37(17):124.

[6] LIU X Y,ZHOU L,CHEN X H,et al.Lithofacies identification using support vector machine based on local deep multi-kernel learning[J].Petroleum Science,2020,17(4):954.

[7] ZHAO H S,GAO Y F,LIU H H,et al.Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine[J].Journal of Modern Power Systems and Clean Energy,2019,7(2):350.

[8] LIU X Y,CHEN X H,LI J Y,et al.Facies identification based on multikernel relevance vector machine[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(10):7269.

[9] CHEN S Y,GU C S,LIN C N,et al.Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement[J].Engineering with Computers,2021,37(3):1943.

[10] YU Z,SHI X Z,ZHOU J,et al.A new multikernel relevance vector machine based on the HPSOGWO algorithm for predicting and controlling blast-induced ground vibration[J].Engineering with Computers,2020,38(2):1.

[11] ZHOU C L,TU B,LI N Y,et al.Structure-aware multikernel learning for hyperspectral image classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:9837.

[12] VITAL-SOTO A,AZAB A,BAKI M F.Mathematical modeling and a hybridized bacterial foraging optimization algorithm for the flexible job-shop scheduling problem with sequencing flexibility[J].Journal of Manufacturing Systems,2020,54:74.

[13] GUO C,TANG H,NIU B,et al.A survey of bacterial foraging optimization[J].Neurocomputing,2021,452:728.

[14] FARSHI T R,ORUJPOUR M.A multi-modal bacterial foraging optimization algorithm[J].Journal of Ambient Intelligence and Humanized Computing,2021,12(11):10035.

[15] LI F,JI W,TAN S,et al.Quantum bacterial foraging optimization:from theory to MIMO system designs[J].IEEE Open Journal of the Communications Society,2020,1:1632.

[16] 贾梦琦,蔡振江,胡建,等.基于机器学习的粮食产量预测模型研究[J].河北农业大学学报,2021,44(3):103.