2023年 02期

Bi_5O_7I-Bi_2O_2(OH)(NO_3)纳米复合纤维的制备与光催化性能研究

Preparation and Photocatalysis Performance of Bi_5O_7I-Bi_2O_2(OH)(NO_3) Nanocomposite Fibers


摘要(Abstract):

采用溶剂热法制备Bi_5O_7I-Bi_2O_2(OH)(NO_3)纳米复合纤维,采用X射线衍射、微观形貌分析、紫外-可见光漫反射光谱、 N_2吸附-脱附、荧光光谱、电化学性能测试等手段对制得的复合样品进行表征,并进行光催化降解罗丹明B活性测试。结果表明:Bi_5O_7I纳米纤维表面负载有少量的Bi_2O_2(OH)(NO_3)纳米片,与Bi_5O_7I和Bi_2O_2(OH)(NO_3)相比,复合样品光催化降解罗丹明B活性明显提高,最佳复合样品的表观降解速率常数分别是纯相Bi_5O_7I和Bi_2O_2(OH)(NO_3)的1.29、 2.48倍,并且重复使用性良好;Bi_5O_7I纳米纤维与Bi_2O_2(OH)(NO_3)纳米片形成的Bi_5O_7I-Bi_2O_2(OH)(NO_3)异质结结构能有效分离光生电子-空穴对,异质结的较大比表面积能够暴露更多的反应活性位点,显著提高复合样品的光催化性能。

关键词(KeyWords): 复合材料;光催化;可见光;异质结

基金项目(Foundation): 山东省自然科学基金项目(ZR2020ME055);; 中国博士后科学基金项目(2016M602138)

作者(Author): 张鑫,王英姿,张兆泽,曹永强

DOI: 10.13349/j.cnki.jdxbn.20220325.003

参考文献(References):

[1] CHOU S K,COSTANZA R,EARIS P,et al.Priority areas at the frontiers of ecology and energy[J].Ecosystem Health and Sustainability,2018,4(10):243.

[2] DU G,LIU S Z,LEI N,et al.A test of environmental Kuznets curve for haze pollution in China:evidence from the penal data of 27 capital cities[J].Journal of Cleaner Production,2018,205:821.

[3] ZAFRILLA J E,LOPEZ L A,CADARSO M A,et al.Fulfilling the Kyoto protocol in Spain:a matter of economic crisis or environmental policies[J].Energy Policy,2012,51:708.

[4] ONSURATOOM S,CHAVADEJ S,SREETHAWONG T,et al.Hydrogen production from water splitting under UV light irradiation over Ag-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts[J].International Journal of Hydrogen Energy,2011,36(9):5246.

[5] YAN W,ZHENG C L,LIU Y L,et al.A novel dual-bed photocatalytic water splitting system for hydrogen production[J].International Journal of Hydrogen Energy,2011,36(13):7405.

[6] LIU Q Y,WANG H D,TANG R,et al.Rutile TiO2 nanoparticles with oxygen vacancy for photocatalytic nitrogen fixation[J].ACS Applied Nano Materials,2021,4(9):8674.

[7] WANG J P,FANG Y X,ZHANG W X,et al.TiO2/BiOBr 2D-2D heterostructure via in-situ approach for enhanced visible-light photocatalytic N2 fixation[J].Applied Surface Science,2021,567:150623.

[8] QIN Y Y,WANG X Y,QIU P Y,et al.Enhanced photocatalytic antibacterial properties of TiO2 nanospheres with rutile/anatase heterophase junctions and the archival paper protection application[J].Nanomaterials,2021,11(10):2585.

[9] WU F,ZHOU F,ZHAN S,et al.Enhanced photocatalytic activities of SnO2 by graphene oxide and its application in antibacterial[J].Optical and Quantum Electronics,2018,50(1):9.

[10] GE J H,ZHANG Z P,OUYANG Z Z,et al.Photocatalytic de-gradation of (micro)plastics using TiO2-based and other catalysts:properties,influencing factor,and mechanism[J].Environmental Research,2022,209:112729.

[11] LI Y S,SONG Z Y,QIN J T,et al.Study on photocatalytic de-gradation of core/shell CdSe/ZnS quantum dots with nano-TiO2 by fluorescent spectrometric methods[J].Journal of Analytical Chemistry,2016,44(1):61.

[12] 宋晨怡,尹大强.四环素光催化降解特性与选择性研究[J].环境科学,2014,35(2):619.

[13] LIU Y,YIN Y Q,JIA X Q,et al.Synthesis process and photocatalytic properties of BiOBr nanosheets for gaseous benzene[J].Environmental Science and Pollution Research,2016,23(17):17525.

[14] QIAO M Z,LIU H J,LV J,et al.Enhanced visible-light photocatalytic remediation of tetracycline hydrochloride by nanostructured BiOI homojunctions[J].Nano,2019,14(9):50.

[15] TIAN J,CHEN Z Y,JING J P,et al.Enhanced photocatalytic activity of BiOCl with regulated morphology and band structure through controlling the adding amount of HCl[J].Materials Letters,2020,272:127860.

[16] SHEN H D,FU F,XUE W W,et al.In situ fabrication of Bi2MoO6/Bi2MoO6-x homojunction photocatalyst for simultaneous photocatalytic phenol degradation and Cr(VI) reduction[J].Journal of Colloid and Interface Science,2021,599:741.

[17] SONG S Y,CHEN H D,LI C X,et al.Magnetic Bi2WO6 nanocomposites:synthesis,magnetic response and their visible-light-driven photocatalytic performance for ciprofloxacin[J].Chemical Physics,2020,530:110614.

[18] ZHAO X X,YANG H,ZHANG H M,et al.Surface-disorder-engineering-induced enhancement in the photocatalytic activity of Bi4Ti3O12 nanosheets[J].Desalination and Water Treatment,2019,145:326.

[19] NI S N,ZHOU T T,ZHANG H N,et al.BiOI/BiVO4 two-dimensional heteronanostructures for visible-light photocatalytic degradation of Rhodamine B[J].ACS Applied Nano Materials,2019,1(9):5128.

[20] ZHOU T T,ZHANG H N,ZHANG X,et al.BiOI/Bi2O2CO3 two-dimensional heteronanostructures with boosting charge carrier separation behavior and enhanced visible-light photocatalytic performance[J].The Journal of Physical Chemistry:C,2020,124(37):20294.

[21] XIA J X,JI M X,DI J,et al.Improved photocatalytic activity of few-layer Bi4O5I2 nanosheets induced by efficient charge sepa-ration and lower valence position[J].Journal of Alloys and Compounds,2017,695:922.

[22] ZHANG H N,ZHANG X,ZHANG Z Z,et al.Ultrahigh charge separation achieved by selective growth of Bi4O5I2 nanoplates on electron-accumulating facets of Bi5O7I nanobelts[J].ACS Applied Materials & Interfaces,2021,13(33):39985.

[23] CHANG C,YANG H C,MU W N,et al.In situ fabrication of bismuth oxyiodide (Bi7O9I3/Bi5O7I)n-n heterojunction for enhanced degradation of triclosan (TCS) under simulated solar light irradiation[J].Applied Catalysis:B,2019,254:647.

[24] ZHANG D,WANG F,CAO S Z,et al.Investigation on enhanced photocatalytic degradation of bisphenol A with bismuth oxyiodide catalyst using response surface methodology[J].RSC Advances,2018,8(11):5967.

[25] CAO J,LI X,LIN H L,et al.Low temperature synthesis of novel rodlike Bi5O7I with visible light photocatalytic performance[J].Materials Letters,2012,76:181.

[26] ZHAO C,LI Y,CHU H Y,et al.Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin:mechanism insight,pathway analysis and toxicity evaluation[J].Journal of Hazardous Materials,2021,419:126466.

[27] HOJAMBERDIEV M,ZHU G Q,LI S P,et al.Er3+-doping induced formation of orthorhombic/monoclinic Bi5O7I heterostructure with enhanced visible-light photocatalytic activity for removal of contaminants[J].Materials Research Bulletin,2020,123:110701.

[28] LIN J N,HU Z,LI H,et al.Ultrathin nanotubes of Bi5O7I with a reduced band gap as a high-performance photocatalyst[J].Inorganic Chemistry,2019,58(15):9833.

[29] WU G J,ZHAO Y,LI Y W,et al.Assembled and isolated Bi5O7I nanowires with good photocatalytic activities[J].Cryst Eng Comm,2017,19(15):2113.

[30] SU Y R,WANG H,YE L Q,et al.Shape-dependent photocatalytic activity of Bi5O7I caused by facets synergetic and internal electric field effects[J].RSC Advances,2014,4(110):65056.

[31] ZHANG J Y,ZHU G Q,LI S P,et al.Novel Au/La-Bi5O7I microspheres with efficient visible-light photocatalytic activity for NO removal:synergistic effect of Au nanoparticles,La doping,and oxygen vacancy[J].ACS Applied Materials & Interfaces,2019,11(41):37822.

[32] ZHANG Y F,ZHU G Q,GAO J Z,et al.Superior-performance spherical-like Eu-doped Bi5O7I photocatalysts for the removal of organic pollutants under visible-light irradiation[J].Journal of Materials Science:Materials in Electronics,2017,28(15):11034.

[33] CAO C S,WANG J Z,YU X Y,et al.Photodegradation of seven bisphenol analogues by Bi5O7I/UiO-67 heterojunction:relationship between the chemical structures and removal efficiency[J].Applied Catalysis:B,2020,277:119222.

[34] HAN X,WANG S B,HUANG H W,et al.Hydroxyl radicals and sulfate radicals synergistically boosting the photocatalytic and mineralization ability of 1D-2D Bi5O7I/NiFe-LDH heterojunction[J].Applied Surface Science,2021,540:148237.

[35] BAI Y,YE L Q,CHEN T,et al.Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets[J].ACS Applied Materials & Interfaces,2016,8(41):27661.

[36] YANG Y,LAI M,HUANG J L,et al.Bi5O7I/g-C3N4 heterostructures with enhanced visible-light photocatalytic performance for degradation of tetracycline hydrochloride[J].Frontiers in Chemistry,2021,9:781991.

[37] CHEN F,YANG Q,YAO F B,et al.Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres:enhanced interfacial charge transfer based on Z-scheme heterojunctions[J].Journal of Catalysis,2017,352:160.

[38] HAO L,HUANG H W,GUO Y X,et al.Multifunctional Bi2O2(OH)(NO3) nanosheets with {001} active exposing facets:efficient photocatalysis,dye-sensitization,and piezoelectric-catalysis[J].ACS Sustainable Chemistry & Engineering,2018,6(2):1848.

[39] HUANG H W,HE Y,LI X W,et al.Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst:strong intrinsic polarity,rational band structure and {001} active facets co-beneficial for robust photooxidation capability[J].Journal of Materials Chemistry:A,2015,3(48):24547.

[40] LIU C Y,HUANG H W,DU X,et al.In situ co-crystallization for fabrication of g-C3N4/Bi5O7I heterojunction for enhanced visible-light photocatalysis[J].The Journal of Physical Chemistry:C,2015,119(30):17156.

[41] CHEN L J,WU J B,SHI L,et al.Flowerlike Bi2O2(OH)NO3/BiOCl nanocomposite with enhance photodegradation activity under simulated sunlight irradiation[J].Journal of Materials Science:Materials in Electronics,2022,33(1):270.

[42] ZHOU M Y,SHI H X,HUANG H W,et al.Bi2O2(OH)NO3/AgI heterojunction with enhanced UV and visible-light responsive photocatalytic activity and mechanism investigation[J].Materials Research Bulletin,2018,108:120.

[43] ZHOU T T,ZHANG H N,ZHANG X,et al.Construction of AgI/Bi2MoO6/AgBi(MoO4)2 multi-heterostructure composite nanosheets for visible-light photocatalysis[J].Materials Today Communications,2020,23:100903.