2023年 02期

氮掺杂氧化锌-氧化锌忆阻器突触可塑性研究

Research on Synaptic Plasticity of Nitrogen-doped Zinc Oxide-Zinc Oxide Memristors


摘要(Abstract):

为了解决传统计算机中存储与运算之间的物理分离以及传输速度受限的问题,制备一种可用于神经形态计算的模拟型忆阻器,采用磁控溅射法在氧化铟锡导电玻璃衬底上依次完成氧化锌、氮掺杂氧化锌阻变层与银顶电极的沉积,对忆阻器的结构和电学性能进行表征、测试,并探究氮掺杂氧化锌薄膜厚度对忆阻器电学性能的影响。结果表明:制得的氮掺杂氧化锌-氧化锌忆阻器具有渐变式的电导切换行为,能够很好地模拟生物突触的可塑性,可用于神经形态计算;氮掺杂氧化锌薄膜厚度的增加有助于电学性能的稳定,减小氮掺杂氧化锌薄膜厚度,会显著增大电导响应的变化率。

关键词(KeyWords): 忆阻器;人工突触;磁控溅射;氮掺杂氧化锌;突触可塑性

基金项目(Foundation): 国家自然科学基金项目(61805101)

作者(Author): 徐蕾,李阳

DOI: 10.13349/j.cnki.jdxbn.20220512.003

参考文献(References):

[1] STRUKOV D B,SNIDER G S,STEWART D R,et al.The missing memristor found[J].Nature,2008,453:80.

[2] CHUA L.Memristor-the missing circuit element [J].IEEE Transactions on Circuit Theory,1971,18(5):507.

[3] SERB A,CORNA A,GEORGE R,et al.Memristive synapses connect brain and silicon spiking neurons[J].Scientific Reports,2020,10:2590.

[4] HUH W,LEE D,LEE CH,et al.Memristors based on 2D materials as an artificial synapse for neuromorphicelectronics[J].Advanced Materials,2020,32(51):e2002092.

[5] LI Y B,WANG Z R,MIDYA,R,et al.Review of memristor devices in neuromorphic computing:materials sciences and device challenges[J].Journal of Physics D:Applied Physics,2018,51(50):503002.

[6] GROLLIER J,QUERLIOZ D,CAMSARI K Y,et al.Neuromorphicspintronics[J].Nature Electronics,2020,3(7):360.

[7] GAO S,LIU G,YANG H L,et al.An oxide Schottky junction artificial optoelectronic synapse[J].ACS Nano,2019,13(2):2634.

[8] CHANTHBOUALA A,GARCIA V,CHERIFI R O,et al.A ferroelectric memristor[J].Nature Materials,2012,11(10):860.

[9] ZHAO X N,XU H Y,WANG Z Q,et al.Memristors with organic-inorganic halide perovskites[J].InfoMat,2019,1(2):183.

[10] CHEN W H,DOU C M,LI K X,et al.CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors[J].Nature Electronics,2019,2(9):420.

[11] WANG Z R,JOSHI S,SAVEL'EV S E,et al.Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[J].Nature Materials,2017,16(1):101.

[12] IELMINI D,AMBROGIO S.Emerging neuromorphic devices[J].Nanotechnology,2020,31(9):092001.

[13] TORREZAN A C,STRACHAN J P,MEDEIROS-RIBEIRO G,et al.Sub-nanosecond switching of a tantalum oxide memristor[J].Nanotechnology,2011,22(48):485203.

[14] SOKOLOV A S,ALI M,RIAZ R,et al.Silver-adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications[J].Advanced Functional Materials,2019,29(18):1807504.

[15] XU R J,JANG H,LEE,M H,et al.Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV[J].Nano Letters,2019,19(4):2411.

[16] ZHANG J,YANG H,ZHANG Q L,et al.Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition[J].Applied Physics Letters,2013,102(1):012113.

[17] BEJTKA K,MILANO G,RICCIARDI C,et al.TEM nanostructural investigation of Ag-conductive filaments in polycrystalline ZnO-based resistive switching devices[J].ACS Applied Materials & Interfaces,2020,12(26):29451.

[18] HUANG Y,SHEN Z H,WU Y,et al.Amorphous ZnO based resistive random access memory[J].RSC Advances,2016,6:17867.

[19] OHNO T,HASEGAWA T,TSURUOKA T,et al.Short-term plasticity and long-term potentiation mimicked in single inorganic synapses[J].Nature Materials,2011,10(8):591.

[20] WANG W X,GAO S,LI Y,et al.Artificial optoelectronic synapses based on TiNxO2-x/MoS2 heterojunction for neuromorphic computing and visual system[J].Advanced Functional Materials,2021,31(34):2101201.

[21] TOYOIZUMI T,PFISTER J,AIHARA K,et al.Optimality model of unsupervised spike-timing-dependent plasticity:synaptic memory and weight distribution[J].Neural Computation,2007,19(3):639.

[22] ZHOU J M,LIU N,ZHU,L Q,et al.Energy-efficient artificial synapses based on flexible IGZO electric-double-layer transistors[J].IEEE Electron Device Letters,2015,36(2):198.

[23] LI H L,JIANG X T,YE W B,et al.Fully photon modulated heterostructure for neuromorphic computing[J].Nano Energy,2019,65:104000.

[24] LIN Y,ZENG T,XU,H Y,et al.Transferable and flexible artificial memristive synapse based on WOx Schottky junction on arbitrary substrates[J].Advanced Electronic Materials,2018,4(12):1800373.

[25] ZUCKER R,REGEHR G.Short-term synaptic plasticity[J].Annual Review of Physiology,2002,64:355.

[26] MIKHEEV V,CHOUPRIK A,LEBEDINSKII Y,et al.Ferro-electric second-order memristor[J].ACS Applied Materials & Interfaces,2019,11(35):32108.

[27] LIM E W,ISMAIL R.Conduction mechanism of valence change resistive switching memory:a survey[J].Electronics,2015,4(3):586.

[28] SUN Y H,YAN X Q,ZHENG X,et al.High on-off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing[J].ACS Applied Materials & Interfaces,2015,7(13):7382.

[29] WANG Z Q,XU H Y,LI X H,et al.Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor[J].Advanced Functional Materials,2012,22(13):2759.

[30] PARK S M,HWANG H G,WOO J U,et al.Improvement of conductance modulation linearity in a Cu2+-doped KNbO3 memristor through the increase of the number of oxygen vacancies[J].ACS Applied Materials & Interfaces,2020,12(1):1069.