摘要(Abstract):
以热塑性树脂为熔剂,金属氧化物为金属元素载体,采用双螺杆熔融共混结合注塑挤出成型工艺,制备X射线荧光光谱法检测用聚合物基标准物质;采用扫描电子显微镜、能量色散X射线谱、同步热重分析等手段对标准物质进行表征。结果表明,聚乙烯基标准物质金属元素分布最均匀,高温烧蚀测试样品中金属氧化物含量与理论添加量误差小于0.6%,最大拉伸强度达12 MPa,初始热分解温度高于290℃,样品表面最大水接触角为91°,具有优异的力学性能、耐热性和疏水性。
关键词(KeyWords): 热塑性聚合物;复合材料;标准物质;X射线荧光光谱法
基金项目(Foundation): 国家自然科学基金项目(21704033);; 中国博士后科学基金项目(2019M662441)
作者(Author):鲁毅,陈建,郭国建,柳洪超,董俊伟,由欣然,宗传永
DOI: 10.13349/j.cnki.jdxbn.20220914.001
参考文献(References):
[1] LIU Y,IMASHUKU S,KAWAI J.Multi-element analysis by portable total reflection X-ray fluorescence spectrometer[J].Analytical Sciences,2013,29:793-797.
[2] 张琴,周雯闻.熔融制样-X射线荧光光谱法测定含碳及碳化硅的铝镁质、 锆质耐火材料中的7种氧化物[J].理化检验:化学分册,2021,57(9):834-839.
[3] WEST M,ELLIS A T,POTTS P J,et al.2016 atomic spectrometry update:a review of advances in X-ray fluorescence spectrometry and its applications[J].Journal of Analytical Atomic Spectrometry,2016,31:1706-1755.
[4] 李玉,黄彩清,吴凌.应用X射线荧光光谱仪对镀层样品的测试研究[J].分析仪器,2019(5):28-32.
[5] GARCíA-FLORENTINO C,MAGUREGUI M,ROMERA-FERNáNDEZ M,et al.Usefulness of a dual macro- and micro-energy-dispersive X-ray fluorescence spectrometer to develop quantitative methodologies for historic mortar and related materials characterization[J].Analytical Chemistry,2018,90(9):5795-5802.
[6] MARTIN K G,CARR T R.Developing a quantitative mudrock calibration for a handheld energy dispersive X-ray fluorescence spectrometer[J].Sedimentary Geology,2020,398:105584.
[7] 范明远.羰基铁粉-热塑性树脂复合材料的制备及其吸波性能研究[D].上海:东华大学,2019.
[8] FAZIL A,RODRIGUE D.Effect of ground tire rubber(GTR) particle size and content on the morphological and mechanical properties of recycled high-density polyethylene (rHDPE)/GTR blends[J].Recycling,2021,6(3):44.
[9] CRAWFORD D E,WRIGHT L A,JAMES S L,et al.Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion[J].Chemical Communications,2016,52(22):4215-4218.
[10] TEIXEIRA P F,COVAS J A,HILLIOU L.In-line rheo-optical investigation of the dispersion of organoclay in a polymer matrix during twin-screw compounding[J].Polymers(Basel),2021,13(13):2128.
[11] 程建邦,于兵,陈峰峰,等.聚丙烯-无机纳米粒子在双螺杆挤出机内的分散混合效果数值模拟[J].工程塑料应用,2021,49(8):68-73,80.
[12] DOLZA C,FAGES E,GONGA E,et al.Development and characterization of environmentally friendly wood plastic composites from biobased polyethylene and short natural fibers processed by injection moulding[J].Polymers(Basel),2021,13(11):1692.
[13] MAO H J,HE B,GUO W,et al.Effects of nano-CaCO3 content on the crystallization,mechanical properties,and cell structure of PP nanocomposites in microcellular injection molding[J].Polymers(Basel),2018,10(10):1160.
[14] YANG X H,WANG G Z,MIAO M H,et al.The dispersion of pulp-fiber in high-density polyethylene via different fabrication processes[J].Polymers(Basel),2018,10(2):122.
[15] 钟建平,严松洲,林明松,等.管式炉法和马弗炉法测定无规共聚聚丙烯(PP-R)管灰分的比较[J].橡塑技术与装备,2021,47(16):46-49.
[16] HOWARTER J A,YOUNGBLOOD J P.Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes[J].Advanced Materials,2007,19(22):3838-3843.
[17] PIFFER V S,SOARES K,GALDINO A G S.Evaluation of mechanical and thermal properties of PP/iron ore tailing composites[J].Composites:Part B:Engineering,2021,221:109001.
[18] AWAD A H,ABDEL-GHANY A W,ABDEL-WAHAB A A,et al.The influence of adding marble and granite dust on the mechanical and physical properties of PP composites[J].Journal of Thermal Analysis and Calorimetry,2020,140:2615-2623.
[19] LABOUREUR D,GLABEKE G,GOURIET J B.Aluminum nanoparticles oxidation by TGA/DSC[J].Journal of Thermal Analysis and Calorimetry,2019,137:1199-1210.