2022年 04期

基于最小生成树和图像矩的陶瓷过滤器表面缺陷检测

Surface Defect Detection of Ceramic Filters Based on Minimum Spanning Tree and Image Moments


摘要(Abstract):

针对人工检测陶瓷过滤器堵孔、裂缝缺陷效率低、误检率高的问题,提出一种基于最小生成树和图像矩的缺陷检测算法;对输入缺陷图像进行灰度化和去除噪声处理,利用阈值分割方法对图像进行二值化,根据陶瓷过滤器表面孔洞空间分布及面积变化,利用滑动窗口遍历图像,结合最小生成树与图像占空比检测堵孔缺陷;根据过滤器裂缝的灰度和形状特征,采用基于图像矩的等价椭圆的方法检测裂缝缺陷。结果表明,所提出的算法能够有效地检测出陶瓷过滤器堵孔、裂缝缺陷,自建数据集的检测准确率达到95%以上。

关键词(KeyWords):陶瓷过滤器;缺陷检测;最小生成树;占空比;图像矩

基金项目(Foundation): 山东省重点研发计划项目(2017CXGC0810);; 山东省高等学校科学技术计划项目(J18KA346,J18KA371)

作者(Author): 周静 ,刘旭 ,董子昊 ,李金屏

DOI: 10.13349/j.cnki.jdxbn.20220527.002

参考文献(References):

[1] 刘敬浩.泡沫陶瓷过滤器的新发展及应用[J].铸造工程,2008(3):9-11.

[2] 汤勃,孔建益,伍世虔.机器视觉表面缺陷检测综述[J].中国图象图形学报,2017,22(12):1640-1663.

[3] SINGHKA D K H,NEOGI N,MOHANTA D.Surface defect classi-fication of steel strip based on machine vision[C]//International Conference on Computer and Communications Technologies,December 11-13,2014,Hyderabad,India.New York:IEEE,2014:15022156.

[4] JEON Y J,CHOI D,LEE S J,et al.Steel-surface defect detection using a switching-lighting scheme[J].Applied Optics,2016,55(1):47-57.

[5] SONG K C,YAN Y H.A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J].Applied Surface Science,2013,285(Part B):858-864.

[6] RUZ G A,ESTéVEZ P A,RAMíREZ P A.Automated visual inspection system for wood defect classification using computational intelligence techniques[J].International Journal of Systems Science,2009,40(2):163-172.

[7] YU H L,LIANG Y L,LIANG H,et al.Recognition of wood surface defects with near infrared spectroscopy and machine vision[J].Journal of Forestry Research,2019,30:2379-2386.

[8] 李小磊,曾曙光,郑胜,等.基于滑动滤波和自动区域生长的陶瓷瓦表面裂纹检测[J].激光与光电子学进展,2019,56(21):49-55.

[9] 刘彬.铸造用泡沫陶瓷过滤网外观缺陷检测系统研究[D].沈阳:沈阳工业大学,2019.

[10] OTSU N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.

[11] CHAUMETTE F.Image moments:a general and useful set of features for visual servoing[J].IEEE Transactions on Robotics,2004,20(4):713-723.

[12] HUBER P J.Robust estimation of a location parameter[J].The Annals of Mathematical Statistics,1964,35(1):73-101.