参考文献(References):
[1] JIN X L,MU Y F,JIA H J,et al.Optimal day-ahead scheduling of integrated urban energy systems[J].Applied Energy,2016,180:1-13.
[2] 林威,靳小龙,穆云飞,等.区域综合能源系统多目标最优混合潮流算法[J].中国电机工程学报,2017,37(20):5829-5839.
[3] 徐航,董树锋,何仲潇,等.考虑能量梯级利用的工厂综合能源系统多能协同优化[J].电力系统自动化,2018,42(14):123-130.
[4] 宋晨辉,冯健,杨东升,等.考虑系统耦合性的综合能源协同优化[J].电力系统自动化,2018,42(10):38-45,86.
[5] 丛昊,王旭,蒋传文,等.基于联盟博弈的综合能源系统优化运行方法[J].电力系统自动化,2018,42(14):14-22.
[6] 刘威,张东霞,王新迎,等.基于深度强化学习的电网紧急控制策略研究[J].中国电机工程学报,2018,38(1):109-119.
[7] KIM M S,HAN D K,PARK J H,et al.Motion planning of robot manipulators for a smoother path using a twin delayed deep deterministic policy gradient with hindsight experience replay[J].Applied Sciences,2020,10(2):575.
[8] LIN X B,LIU J,YU Y,et al.Event-triggered reinforcement learning control for the quadrotor UAV with actuator saturation[J].Neurocomputing,2020,415:135-145.
[9] WEGENER M,KOCH L,EISENBARTH M,et al.Automated eco-driving in urban scenarios using deep reinforcement learning[J].Transportaton Research:Part C:Emerging Technologies,2021,126:102967.
[10] 李嘉文,余涛,张孝顺,等.基于改进深度确定性梯度算法的AGC发电功率指令分配方法[J].中国电机工程学报,2021,41(21):7198-7211.
[11] ZHOU J H,XUE S W,XUE Y,et al.A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning[J].Energy,2021,224:120118.
[12] 桂雄威,李琦芬,杨涌文,等.能源集线器控制体模型及其生长型场景模拟分析[J].热力发电,2020,49(6):90-96.
[13] HAN X F,HE H W,WU J D,et al.Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle[J].Applied Energy,2019,254:113708.
[14] WANG Y,ZHANG N,KANG C Q,et al.Standardized matrix modeling of multiple energy systems[J].IEEE Transactions on Smart Grid,2019,10(1):257-270.
[15] CHICCO G,MANCARELLA P.Matrix modelling of small-scale trigeneration systems and application to operational optimization[J].Energy,2009,34(3):261-273.
[16] MNIH V,KAVUKCUOGLU K,SILVER D,et al.Human-level control through deep reinforcement learning[J].Nature,2015,518:529-533.