2022年 02期

量子遗传算法优化加权朴素贝叶斯复合语言文本分类

Weighted Naive Bayes Compound Language Text Classification Optimized by Using Quantum Genetic Algorithm


摘要(Abstract):

为了提高朴素贝叶斯算法的复合语言文本分类准确度和效率,将加权朴素贝叶斯算法用于复合语言文本分类,采用量子遗传算法对权重参数进行优化;根据贝叶斯定理建立语言文本分类模型,考查样本属性之间的差异对分类结果的影响;然后引入属性权重,形成加权朴素贝叶斯文本分类模型;利用遗传算法对权重参数进行优化,借助量子比特运算提高遗传优化效率,最终得到稳定的复合语言文本分类模型。结果表明,通过合理设置权重个数,量子遗传算法改善了加权朴素贝叶斯算法的文本分类性能,与常用语言文本分类算法对比,该算法具有较高的分类精度和分类效率,在复合语言文本分类中的适用性好。

关键词(KeyWords): 量子遗传算法;加权朴素贝叶斯算法;复合语言文本;分类;量子比特

基金项目(Foundation): 国家自然科学基金项目(61662028);; 江西省科技厅科技计划项目(GJJ170447)

作者(Author): 隆峻,神显豪,丁小军,郭先春

DOI: 10.13349/j.cnki.jdxbn.20211011.001

参考文献(References):

[1] 于游,付钰,吴晓平.中文文本分类方法综述[J].网络与信息安全学报,2019,5(5):1-8.

[2] BURKHARDT S,KRAMER S.Online multi-label dependency topic models for text classification[J].Machine Learning,2018,107:859-886.

[3] PAVLINEK M,PODGORELEC V.Text classification method based on self-training and LDA topic models[J].Expert Systems with Applications,2017,80:83-93.

[4] LIU C L,HSAIO W H,LEE C H,et al.Semi-supervised text classification with universum learning[J].IEEE Transactions on Cybernetics,2016,46(2):462-473.

[5] GAO H Y,ZENG X,YAO C H.Application of improved distri-buted naive Bayesian algorithms in text classification[J].The Journal of Supercomputing,2019,75:5831-5847.

[6] JIANG L X,LI C Q,WANG S S,et al.Deep feature weighting for naive Bayes and its application to text classification[J].Engineering Applications of Artificial Intelligence,2016,52:26-39.

[7] 赵海霞,李赟,石洪波.基于高维数据的加权朴素贝叶斯算法研究[J].统计与决策,2020(8):5-9.

[8] LI J M,WU W F,XUE D.Transfer naive Bayes algorithm with group probabilities[J].Applied Intelligence,2020,50:61-73.

[9] KHANDUZI R,SANGAIAH A K.A fast genetic algorithm for a critical protection problem in biomedical supply chain networks[J].Applied Soft Computing,2019,75:162-179.

[10] KANTOUR N,BOUROUBI S.Cryptanalysis of Merkle-Hellman cipher using parallel genetic algorithm[J].Mobile Networks and Applications,2020,25:211-222.

[11] JIA W K,ZHAO D A,ZHENG Y J,et al.A novel optimized GA-Elman neural network algorithm[J].Neural Computing and Applications,2019,31:449-459.

[12] LIU P,YE S,WANG C,et al.Spark-based parallel genetic algorithm for simulating a solution of optimal deployment of an underwater sensor network[J].Sensors,2019,19(12):2717.

[13] LI Y Y,BAI X Y,JIAO L C,et al.Partitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation[J].Applied Soft Computing,2017,56:345-356.

[14] ABDOOS A A,MIANAEI P K,GHADIKOLAEI M R.Combined VMD-SVM based feature selection method for classification of power quality events[J].Applied Soft Computing,2016,38:637-646.

[15] RANJAN N M,PRASAD R S.Automatic text classification using BPLion-neural network and semantic word processing[J].The Imaging Science Journal,2018,66(2):69-83.

[16] ZHAO F,LI Y G,BAI L,et al.Semi-supervised multi-granularity CNNs for text classification:an application in human-car inter-action[J].IEEE Access,2020,8:68000-68012.