2022年 02期

概周期驱动的二维分段线性范式系统的奇异非混沌吸引子

Strange Nonchaotic Attractors in Quasiperiodically Driven Two-dimensional Piecewise Linear Normal Form System


摘要(Abstract):

利用相轨迹图、最大李雅普诺夫指数、有理逼近等方法,探讨概周期驱动的二维分段线性范式系统是否存在奇异非混沌吸引子;通过改变控制参数,观察系统的相轨迹图中是否出现分形现象;通过计算最大李雅普诺夫指数,得到奇异非混沌吸引子;通过对比有理逼近图与相轨迹图,验证奇异非混沌吸引子的存在性;通过功率谱、相敏感函数和回归图对奇异非混沌吸引子的存在性进行进一步验证。结果表明,概周期驱动的二维分段线性范式系统中在一定参数范围内的吸引子都是奇异非混沌吸引子,验证了概周期驱动的二维分段线性范式系统中奇异非混沌吸引子的存在性。

关键词(KeyWords): 非光滑系统;奇异非混沌吸引子;李雅普诺夫指数;相轨迹图

基金项目(Foundation): 国家自然科学基金项目(11732014)

作者(Author): 徐震,沈云柱

DOI: 10.13349/j.cnki.jdxbn.20211125.001

参考文献(References):

[1] GREBOGI C,OTT E,PELIKAN S,et al.Strange attractors that are not chaotic[J].Physica:D,1984,13(1/2):261-268.

[2] RIZWANA R,MOHAMED R I.Applicability of strange nonchaotic Wien-bridge oscillators for secure communication[J].Pramana,2018,91(1):10.

[3] LI G L,YUE Y,LI D H,et al.The existence of strange nonchaotic attractors in the quasiperiodically forced Ricker family[J].Chaos:An Interdisciplinary Journal of Nonlinear Science,2020,30(5):053124.

[4] PREMRAJ D,PAWAR A S,KABIRAJ L,et al.Strange nonchaos in self-excited singing flames[J].EPL(Europhysics Letters),2019,128(5):54005.

[5] WEI Z C,PHAM V T,KHALAF A J M,et al.A modified multistable chaotic oscillator[J].International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,2018,28(7):1850085.

[6] CABANAS A M,PéREZ L M,LAROZE D.Strange non-chaotic attractors in spin valve systems[J].Journal of Magnetism and Magnetic Materials,2018,460:320-326.

[7] RIZWANA R,MOHAMED I R.Strange nonchaotic dynamics of parametrically enhanced MLC circuit[J].Journal of Computational Electronics,2018,17(3):1297-1302.

[8] SATHISH A M,VENKATESAN A,LAKSHMANAN M.Strange nonchaotic attractors for computation[J].Physical Review:E,2018,97(5):052212.

[9] PREMRAJ D,SURESH K,PALANIVEL J,et al.Dynamic bifurcation and strange nonchaos in a two-frequency parametrically driven nonlinear oscillator[J].Communications in Nonlinear Science and Numerical Simulation,2017,50:103-114.

[10] SHEN Y Z,ZHANG Y X.Mechanisms of strange nonchaotic attractors in a nonsmooth system with border-collision bifur-cations[J].Nonlinear Dynamics,2019,96(2):1405-1428.

[11] DI B M,BUDD C J,CHAMPNEYS A R.Grazing and border-collision in piecewise-smooth systems:a unified analytical framework[J].Physical Review Letters,2001,86(12):2553-2556.

[12] ZHANG Y X,SHEN Y Z.A new route to strange nonchaotic attractors in an interval map[J].International Journal of Bifur-cation and Chaos,2020,30(4):2050063.

[13] YANG H L.Milnor strange nonchaotic attractor with complex basin of attraction[J].Physical Review:E,2001,63(3):036208.

[14] PAUL A M,MURALI K,PHILOMINATHAN P.Strange nonchaotic attractors in oscillators sharing nonlinearity[J].Chaos,Solitons & Fractals,2019,118:83-93.

[15] 张永祥,俞建宁,褚衍东,等.一类新电路系统的奇怪非混沌吸引子分析[J].河北师范大学学报(自然科学版),2008,32(6):753-757.

[16] 谢帆,杨汝,张波.电流反馈型Buck变换器二维分段光滑系统边界碰撞和分岔研究[J].物理学报,2010,59(12):8393-8406.

[17] 刘剑波,叶春飞,张树京.基于收缩映射的奇异非混沌系统同步[J].物理学报,2000,49(1):20-23

[18] RAMASWAMY R.Synchronization of strange nonchaotic attractors[J].Physical Review:E,1997,56(6):7294-7296.

[19] MITSUI T,CRUCIFIX M,AIHARA K.Bifurcations and strange nonchaotic attractors in a phase oscillator model of glacial-interglacial cycles[J].Physica:D:Nonlinear Phenomena,2015,306:25-33.

[20] 沈云柱,张凡辉,东广霞.概周期驱动分段Logistic系统的奇异非混沌吸引子[J].河北师范大学学报(自然科学版),2019,43(3):207-212.

[21] SHEN Y Z,ZHANG Y X.Strange nonchaotic attractors in a quasi-periodically-forced piecewise smooth system with farey tree[J].Fractals,2019,27(7):1950118.

[22] YUE Y,MIAO P C,XIE J H.Coexistence of strange nonchaotic attractors and a special mixed attractor caused by a new inter-mittency in a periodically driven vibro-impact system[J].Nonlinear Dynamics,2017,87(2):1187-1207.

[23] SENTHILKUMAR D V,SRINIVASAN K,THAMILMARAN K,et al.Bubbling route to strange nonchaotic attractor in a nonlinear series LCR circuit with a nonsinusoidal force[J].Physical Review:E,2008,78(6):066211.

[24] AVRUTIN V,SCHANZ M,BANERJEE S.Occurrence of multiple attractor bifurcations in the two-dimensional piecewise linear normal form map[J].Nonlinear Dynamics,2012,67(1):293-307.