摘要(Abstract):
为了研究自复位支撑模型在建筑结构发生较大变形后,能够较快地使结构耗散能量并回归初始位置的特性,利用直接微分法,推导实现自复位支撑模型响应的参数敏感性分析算法,并通过二次开发,将自复位支撑模型嵌入非线性有限元软件OpenSees。结果表明:采用自复位支撑模型不仅可以弥补结构因较大灾害而永久丧失承载功能的不足,还有助于减少结构的最大变形和残余变形;基于直接微分法的计算结果与有限差分法计算结果的对比验证了基于直接微分法的敏感性分析算法的正确性、精确性和高效性。
关键词(KeyWords): 非线性有限元分析;敏感性分析;自复位支撑模型;直接微分法
基金项目(Foundation):国家自然科学基金项目(51778551)
作者(Author): 刘行,陈昌萍
DOI: 10.13349/j.cnki.jdxbn.20210901.003
参考文献(References):
[1] KITAYAMA S,CONSTANTINOU M C.Seismic response analysis of single-degree-of-freedom yielding structures with fluidic self-centering systems[J].Engineering Structures,2016,125:266-279.
[2] 夏婉秋,鲁亮,张会会,等.基于Pushover分析方法的体外预应力自复位框架抗震性能研究[J].工程力学,2020,37(增刊1):172-179,186.
[3] 李征,吴婷婷,舒展,等.自复位胶合木框架结构设计方法与地震易损性分析[J].建筑结构学报,2021,42(3):211-222.
[4] STAVROULAKIS G E.Parameter sensitivity in nonlinear mecha-nics:theory and finite element computations[J].European Journal of Mechanics:A:Solids,1998,17(4):702-703.
[5] CONTE J P,VIJALAPURA P K,MEGHELLA M.Consistent finite-element response sensitivity analysis[J].Journal of Engineering Mechanics,2003,129(12):1380-1393.
[6] BARBATO M,GU Q,CONTE J P.Probabilistic push-over analysis of structural and soil-structure systems[J].Journal of Structural Engineering,2010,136(11):1330-1341.
[7] DITLEVSEN O,MADSEN H O.Structural reliability methods[M].West Sussex:Wiley,1996.
[8] ZHANG Y,DER KIUREGHIAN A.Dynamic response sensitivity of inelastic structures[J].Computer Methods in Applied Mechanics and Engineering,1993,108(1/2):23-36.
[9] 谭平,周林丽,滕晓飞.自复位钢框架-半圆形波纹钢板剪力墙滞回性能研究[J].建筑结构学报,2021,42(3):185-192.
[10] CHRISTOPOULOS C,TREMBLAY R,KIM H J,et al.Self-centering energy dissipative bracing system for the seismic resis-tance of structures:development and validation[J].Journal of Structural Engineering,2008,134(1):96-107.
[11] CONTE J P.Finite element response sensitivity analysis in earthquake engineering[M]//SPENCER B F,Jr,HU Y X.Earthquake Engineering Frontiers in the New Millennium.Amsterdam:Swets and Zeitlinger,2001:395-401.
[12] CONTE J P,BARBATO M,SPACONE E.Finite element response sensitivity analysis using force-based frame models[J].International Journal for Numerical Methods in Engineering,2004,59(13):1781-1820.
[13] SCOTT M H,FRANCHIN P,FENVES G L,et al.Response sensitivity for nonlinear beam-column elements[J].Journal of Structural Engineering,2004,130(9):1281-1288.
[14] HAUKAAS T,DER KIUREGHIAN A.Strategies for finding the design point in non-linear finite element reliability analysis[J].Probabilistic Engineering Mechanics,2006,21(2):133-147.
[15] 周颖,唐佳铭.高层自复位剪力墙结构抗震性能分析[J].结构工程师,2020,36(3):62-70.
[16] ZHOU Y J,ZHANG Y N,LIANG Y,et al.A reduced-order extrapolated model based on splitting implicit finite difference scheme and proper orthogonal decomposition for the fourth-order nonlinear Rosenau equation[J].Applied Numerical Mathematics,2021,162:192-200.