2021年 06期

Far-infrared Person Identification Method Based on Multi-camera Relay Tracking


摘要(Abstract):

为了识别低分辨率远红外监护视频中的人物身份,提出一种基于多摄像头接力跟踪的远红外人物身份识别方法;首先在室外利用可见光摄像头通过人脸识别算法识别将要进入房间的人物身份,然后通过人物运动轨迹检测和跨模态多摄像头接力跟踪模型实现同一人物在前、后2个时刻的身份一致性认定,从而识别视频中每一时刻的人物身份。结果表明,该方法综合识别准确率达到92.7%,能够有效识别低分辨率远红外监护视频中的人物身份。

关键词(KeyWords):人物身份识别;人脸识别;接力跟踪;低分辨率远红外视频

基金项目(Foundation): 山东省重点研发计划项目(2017CXGC0810);; 山东省高等学校科技计划项目(J18KA371)

作者(Author): 江鹏飞,王保栋,董子昊,李金屏

DOI: 10.13349/j.cnki.jdxbn.20210602.001

参考文献(References):

[1] 谢志华,刘国栋.基于局部二元模式的快速红外人脸识别系统[J].红外与激光工程,2013,42(12):3190-3195.

[2] 杜梅,曹蔚然.基于压缩感知的红外人脸识别[J].软件工程,2019,22(1):16-18.

[3] TURK M,PENTLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.

[4] BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J.Eigenfaces vs.Fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.

[5] LAWRENCE S,GILES C L,TSOI A C,et al.Face recognition:aconvolutional neural network approach[J].IEEE Transactions on Neural Networks,1997,8(1):98-113.

[6] GUO G D,LI S Z,CHAN K.Face recognition by support vector machines[C]//Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition,March 28-30,2000,Grenoble,France.New York:IEEE,2000:196-201.

[7] CHEN D,CAO X D,WANG L W,et al.Bayesian face revisited:a joint formulation[C]//Proceedings of the 12th European Conference on Computer Vision,October 7-13,2012,Florence,Italy.Berlin:Springer,2012:566-579.

[8] TAIGMAN Y,YANG M,RANZATO M A,et al.DeepFace:closing the gap to human-level performance in face verification[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition,June 20-23,2014,Columbus,USA.New York:IEEE,2014:1701-1708.

[9] SUN Y,WANG X G,TANG X O.Deep learning face representation from predicting 10,000 classes[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition,June 20-23,2014,Columbus,USA.New York:IEEE,2014:1891-1898.

[10] SUN Y,WANG X G,TANG X O.Deeply learned face representations are sparse,selective,and robust[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),June 7-12,2015,Boston,USA.New York:IEEE,2015:2892-2900.

[11] SCHROFF F,KALENICHENKO D,PHILBIN J.FaceNet:a unified embedding for face recognition and clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition,June 7-12,2015,Boston,USA.New York:IEEE,2015:815-823.

[12] LEE L,GRIMSON W E L.Gait analysis for recognition and classification[C]//Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition,May 20-21,2002,Washington,USA.New York:IEEE,2002:155-162.

[13] LóPEZ-FERNáNDEZ D,MADRID-CUEVASF J,CARMONA-POYATO A,et al.A new approach for multi-view gait recognition on unconstrained paths[J].Journal of Visual Communication and Image Representation,2016,38:396-406.

[14] HAN J,BHANU B.Individual recognition using gait energy image[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(2):316-322.

[15] GOFFREDO M,BOUCHRIKA I,CARTER J N,et al.Self-calibrating view-invariant gait biometrics[J].IEEE Transactions on Systems,Man,and Cybernetics:Part B:Cybernetics,2009,40(4):997-1008.

[16] LIU N N,TAN Y P.View invariant gait recognition[C]//2010 IEEE International Conference on Acoustics,Speech and Signal Processing,March 14-19,2010,Dallas,USA.New York:IEEE,2010:1410-1413.

[17] YAN C,ZHANG B L,COENEN F.Multi-attributes gait identification by convolutional neural networks[C]//2015 8th International Congress on Image and Signal Processing,October 14-16,2015,Shenyang,China.New York:IEEE,2015:642-647.

[18] K?ESTINGER M,HIRZER M,WOHLHART P,et al.Large scale metric learning from equivalence constraints[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition,June 18-20,2012,Providence,USA.New York:IEEE,2012:2288-2295.

[19] SHEN Y,LIN W Y,YAN J C,et al.Person re-identification with correspondence structure learning[C]//2015 IEEE International Conference on Computer Vision,December 7-13,2015,Santiago,Chile.New York:IEEE,2015:3200-3208.

[20] DAS A,CHAKRABORTY A,ROY-CHOWDHURY A K.Consistent re-identification in a camera network[C]// Proceedings of the 13th European Conference on Computer Vision,September 6-12,2014,Zurich,Switzerland.Cham:Springer,2014:330-345.

[21] LI W,ZHAN R,XIAO T,et al.DeepReID:deep filter pairing neural network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,June 20-23,2014,Columbus,USA.New York:IEEE,2014:152-159.

[22] YI D,LEI Z,LIAO S C,et al.Deep metric learning for person re-identification[C]//2014 22nd International Conference on Pattern Recognition,August 24-28,2014,Stockholm,Sweden.New York:IEEE,2014:34-39.

[23] WEINBERGER K Q,SAUL K L.Distance metric learning for large margin nearest neighbor classification[J].The Journal of Machine Learning Research,2009,10(1):207-244.

[24] ZHENG W Z,GONG S G,XIANG T.Person re-identification by probabilistic relative distance comparison[C]//IEEE Conference on Computer Vision and Pattern Recognition,June 21-23,2011,Colorado Springs,USA.New York:IEEE,2011:649-656.

[25] PEDAGADI S,ORWELL J,VELASTIN S,et al.Local fisher discriminant analysis for pedestrian re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition,June 23-28,2013,Portland,USA.New York:IEEE,2013:3318-3325.

[26] LIAO S C,HU Y,ZHU X Y,et al.Person re-identification by local maximal occurrence representation and metric learning[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition,June 7-12,2015,Boston,USA.New York:IEEE,2015:2197-2206.

[27] REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,June 26-July 1,2016,Las Vegas,USA.New York:IEEE,2016:779-788.

[28] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,June 26-July 1,2016,Las Vegas,USA.New York:IEEE,2016:770-778.

[29] HENRIQUES J F,CASEIRO R,MARTINS P,et al.High-speed tracking with kernelized correlation filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-596.

[30] 任荣.非重叠域多摄像机目标检测与跟踪算法研究[D].徐州:中国矿业大学,2016.

[31] 董文会.多摄像机监控网络中的目标连续跟踪方法研究[D].济南:山东大学,2015.

[32] 陈文曲.基于外观特征和时空关联的无重叠视域目标跟踪技术研究[D].南京:南京邮电大学,2013.

[33] 郑娇.基于时空转移模型的监控目标交接算法研究[D].天津:中国民航大学,2016.