摘要(Abstract):
针对集中式车载网络不能满足移动用户需求的问题,将移动边缘计算引入车载网络,以增强车辆的计算能力,提升服务质量,并有效地解决任务传输过程的丢包、时延问题;对移动边缘计算网联式车队资源分配和任务卸载展开研究,建立移动边缘计算车载网络系统模型,将车辆计算任务分配至相邻车辆节点和移动边缘计算服务器进行任务卸载计算;构建马尔科夫优化过程,利用车辆节点状态转移获取所有计算任务决策方案,通过选择不同传输路径的条件概率,计算数据传输的成功概率,比较任务执行周期的总时长,获得任务分配和卸载的最优方案;采用MATLAB软件构建边缘计算环境中车载网络任务分配和卸载的仿真模型,研究不同任务量、不同时间段时3种资源分配和任务卸载方法的总时长。结果表明,马尔科夫优化方法能够有效地减少任务执行总时长,提高网络资源利用效率。
关键词(KeyWords): 移动边缘计算;分配和卸载优化方案;马尔科夫优化;智能网联式车队
基金项目(Foundation): 国家自然科学基金项目(51765021);; 江西省重点研发计划项目(20181BBE50012);; 江西科技学院自然科学项目(ZR1904)
作者(Author): 李沁颖,曹青松
DOI: 10.13349/j.cnki.jdxbn.20210602.002
参考文献(References):
[1] SUN W L,STR?M E G,BR?NNSTR?M F,et al.Radio resource management for D2D-based V2V communication[J].IEEE Transactions on Vehicular Technology,2016,65(8):6636-6650.
[2] YE C L,WANG P,WANG C,et al.Mobility management for LTE-based heterogeneous vehicular network in V2X scenario[C]//2016 2nd IEEE International Conference on Computer and Communications (ICCC),October 14-17,2016,Chengdu,China.New York:IEEE,2017:2203-2207.
[3] 张海波,栾秋季,朱江,等.车辆异构网中基于移动边缘计算的任务卸载与资源分配[J].物联网学报,2018,2(3):36-43.
[4] 李子姝,谢人超,孙礼,等.移动边缘计算综述[J].电信科学,2018,34(1):87-101.
[5] 李波,黄鑫,牛力,等.车载边缘计算环境中的任务卸载决策和优化[J].微电子学与计算机,2019,36(2):78-82.
[6] 谷晓会,章国安.移动边缘计算在车载网中的应用综述[J].计算机应用研究,2020,37(6):1615-1621.
[7] 彭维平,苏哲,宋成,等.面向车联网实时应用场景的任务卸载决策算法[J].北京邮电大学学报,2018,41(4):44-50.
[8] CHIANG M,ZHANG T.Fog and IoT:an overview of research opportunities[J].IEEE Internet of Things Journal,2016,3(6):854-864.
[9] ZHANG K,MAO Y M,LENG S P,et al.Delay constrained offloading for mobile edge computing in cloud-enabled vehicular networks[C]//2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM),September 13-15,2016,Halmstad,Sweden.New York:IEEE,2016:288-294.
[10] ZHANG K,MAO Y M,LENG S P,et al.Mobile-edge computing for vehicular networks:a promising network paradigm with predictive off-loading[J].IEEE Vehicular Technology Magazine,2017,12(2):36-44.
[11] HUANG C M,CHIANG M S,DAO D T,et al.V2V data offloading for cellular network based on the software defined network (SDN) inside mobile edge computing (MEC) architecture[J].IEEE Access,2018,6:17741-17755.
[12] CHEN X,JIAO L,LI W Z,et al.Efficient multi-user computation offloading for mobile-edge cloud computing[J].IEEE/ACM Transactions on Networking,2016,24(5):2795-2808.
[13] AL-SHUWAILI A,SIMENONE O.Energy-efficient resource allocation for mobile edge computing-based augmented reality applications[J].IEEE Wireless Communications Letters,2017,6(3):398-401.
[14] ZHANG H L,GUO F X,JI H,et al.Combinational auction-based service provider selection in mobile edge computing networks[J].IEEE Access,2017,5:13455-13464.