2021年 03期

Fault Monitoring of Industrial Systems Based on Principal Component Analysis-Twin Support Vector Machine


摘要(Abstract):

为了改善现代工业系统故障检测和诊断的性能,提出一种基于主成分分析-孪生支持向量机挖掘的工业系统故障监测方法;采用多元统计的主成分分析方法对涉及的复杂故障变量进行降维,并对提取的主要故障变量进行判断,完成故障检测;将孪生支持向量机引入到故障类型的识别过程,结合主成分分析方法进行系统监测。结果表明,与加权K近邻、主成分分析-K近邻和主成分分析-支持向量机3种方法相比较,所提出的方法识别更快,准确率较高。

关键词(KeyWords): 工业系统;故障识别;主成分分析;孪生支持向量机;数据降维

基金项目(Foundation): 国家自然科学基金项目(51705289);; 山东省重点研发计划项目(2019GGX104101);; 山东大学教育教学改革研究项目(2019Y112)

作者(Author): 朱振杰,杜付鑫,杨旺功

DOI: 10.13349/j.cnki.jdxbn.20201204.001

参考文献(References):

[1] LIU C,JIANG P Y.A cyber-physical system architecture in shop floor for intelligent manufacturing[J].Procedia CIRP,2016,56(5):372-377.

[2] WANG Y X,LI K,GAN S J,et al.Analysis of energy saving potentials in intelligent manufacturing:a case study of bakery plants[J].Energy,2019,172(1):477-486.

[3] WANG J J,ZHANG L B,DUAN L X,et al.A new paradigm of cloud-based predictive maintenance for intelligent manufacturing[J].Journal of Intelligent Manufacturing,2017,28(5):1125-1137.

[4] ZHU K,JOSHI S,WANG Q G,et al.Guest editorial special section on big data analytics in intelligent manufacturing[J].IEEE Transactions on Industrial Informatics,2019,15(4):2382-2385.

[5] FARID A M.Measures of reconfigurability and its key characteristics in intelligent manufacturing systems[J].Journal of Intelligent Manufacturing,2017,28(2):353-369.

[6] ZHONG S Y,CHEN Y Z,ZHOU J,et al.An interactive satisficing approach for multi-objective optimization with uncertain parameters[J].Journal of Intelligent Manufacturing,2017,28(3):535-547.

[7] JIANG C X,ZHANG H J,REN Y,et al.Machine learning paradigms for next-generation wireless networks[J].IEEE Wireless Communications,2017,24(2):98-105.

[8] JEAN N,BURKE M,XIE M,et al.Combining satellite imagery and machine learning to predict poverty[J].Science,2016,353:790-794.

[9] SIDIROPOULOS N D,LATHAUWER L D,FU X,et al.Tensor decomposition for signal processing and machine learning[J].IEEE Transactions on Signal Processing,2017,65(13):3551-3582.

[10] 张成,郭青秀,冯立伟,等.基于局部保持投影-加权k近邻规则的多模态间歇过程故障检测策略[J].控制理论与应用,2019,36(10):1682-1689.

[11] 赵晓君,郑倩.基于PCA-KNN聚类的通用在线故障诊断算法设计[J].计算机测量与控制,2015,28(8):2762-2765.

[12] YANG C M,HOU J.Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine[J].Neurocomputing,2016,190(19):117-123.

[13] YAN H,YE Q L,YU D J.Efficient and robust TWSVM classification via a minimum L1-norm distance metric criterion[J].Machine Learning,2019,108(6):993-1018.

[14] DU Y B,XIAO L F,CHEN Y S,et al.Aircraft engine gas path fault diagnosis based on hybrid PSO-TWSVM[J].Transactions of Nanjing University of Aeronautics and Astronautics,2018,35(2):334-342.

[15] 曹路,秦传波,洪灿佳.基于遗传算法的双子支持向量机的模型选择[J].现代电子技术,2017,40(17):105-108.

[16] LI W T,HUANG Z G,LANG R L.A real-time interference monitoring technique for GNSS based on a twin support vector machine method[J].Sensors,2016,16(3):329-341.

[17] WANG Z,SHAO Y H,BAI L.Twin support vector machine for clustering[J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(10):2583-2588.