2021年 02期

Numerical Method for Multi-term Fractional Order Nonlinear Differential Equations


摘要(Abstract):

为了数值求解一类多项分数阶非线性微分方程,构造一种具有一阶精度的显式数值方法;采用Riemann-Liouville积分算子,将多项分数阶非线性微分方程转化成与之等价的积分形式;基于该积分方程,运用复合矩形求积公式,给出有效的数值方法;对于2种不同形式的多项分数阶非线性微分方程,分别证明所构造数值方法的收敛性和无条件稳定性;通过3个数值算例,对数值方法进行验证。结果表明,该数值方法与理论计算结果相吻合,并且具有较高的计算效率。

关键词(KeyWords): 多项分数阶非线性微分方程;数值方法;收敛性;稳定性;Riemann-Liouville积分

基金项目(Foundation): 国家自然科学基金项目(11701502)

作者(Author): 乔智,赵维加,黄健飞

DOI: 10.13349/j.cnki.jdxbn.20201010.003

参考文献(References):

[1] MILLER K S,ROSS B.An introduction to the fractional calculus and fractional differential equations[M].Wiley,New York,1993.

[2] 陈文,孙洪广,李西成.力学与工程问题的分数阶导数建模[M].北京:科学出版社,2010.

[3] CHI M,NEAL E,YOUNG G K.Practical application of fractional Brownian motion and noise to synthetic hydrology[J].Water Resources Research,1973,9(6):1523-1533.

[4] ALEROEV T S,ALEROEVA H T,HUANG J F,et al.Features of seepage of a liquid to a chink in the cracked deformable layer[J].International Journal of Modeling,Simulation,and Scientific Computing,2010,1(3):333-347.

[5] FENG J,LIN W C,CHEN C T.Fractional box-counting approach to fractal dimension estimation[C]//Proceedings of 13th Inter-national Conference on Pattern Recognition,August 25-29,1996,Vienna,Austria.New York:IEEE,1996:854-858.

[6] BAZELYANSKY M,ROBEY E,KIRSCH J F.Fractional diffusion-limited component of reactions catalyzed by acetylcholinesterase[J].Biochemistry,1986,25(1):125-130.

[7] DIETHELM K.An algorithm for the numerical solution of differential equations of fractional order[J].Electronic Transactions on Numerical Analysis,1997,5:1-6.

[8] EDWARDS J T,FORD N J,SIMPSON A C.The numerical solution of linear multi-term fractional differential equations:systems of equations[J].Journal of Computational and Applied Mathematics,2002,148(2):401-418.

[9] EL-MESIRY A E M,EL-SAYED A M A,EL-SAKA H A A.Numerical methods for multi-term fractional (arbitrary) orders differential equations[J].Applied Mathematics and Computation,2005,160(3):683-699.

[10] KUMAR P,AGRAWAL O P.An approximate method for numeri-cal solution of fractional differential equations[J].Signal Processing,2006,86(10):2602-2610.

[11] LIN R,LIU F.Fractional high order methods for the nonlinear fractional ordinary differential equation[J].Nonlinear Analysis:Theory,Methods and Applications,2007,66(4):856-869.

[12] FORD N J,CONNOLLY J A.Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations[J].Journal of Computational and Applied Mathematics,2009,229(2):382-391.

[13] HUANG J F,TANG Y F,VáZQUEZ L.Convergence analysis of a block-by-block method for fractional differential equations[J].Numerical Mathematics Theory Methods and Applications,2012,5(2):229-241.

[14] LI C P,CHEN A,YE J J.Numerical approaches to fractional calculus and fractional ordinary differential equation[J].Journal of Computational Physics,2011,230(9):3352-3368.

[15] LIU F W,MEERSCHAERT M M,McGOUGH R J,et al.Numerical methods for solving the multi-term time-fractional wave-diffusion equation[J].Fractional Calculus and Applied Analysis,2013,16(1):9-25.

[16] ZHENG B,FENG Q H.A new approach for solving fractional partial differential equations in the sense of the modified Riemann-Liouville derivative[J].Mathematical Problems in Engineering,2014,2014:307371.

[17] STYNES M,O’RIORDAN E,GRACIA J L.Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation[J].SIAM Journal on Numerical Analysis,2017,55(2):1057-1079.

[18] HEYDARI M H,AVAZZADEH Z,HAROMI M F.A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation[J].Applied Mathematics and Compu-tation,2019,341:215-228.

[19] DUTT A,GREENGARD L,ROKHLIN V.Spectral deferred correction methods for ordinary differential equations[J].BIT Numerical Mathematics,2000,40(2):241-266.

[20] 黄建华,辛杰,沈天龙.分数阶微分方程的动力学[M].北京:科学出版社,2017.

[21] 孙志忠,高广花.分数阶微分方程的有限差分方法[M].北京:科学出版社,2018.