2021年 01期

Blind Restoration of Motion Blurred Images Based on Sparse Regularization and Asymptotic Boundary Hypothesis


摘要(Abstract):

为了复原因相机抖动而产生的运动模糊图像,提出基于L_p范数和全变分范数的正则化盲复原方法;首先,基于模糊图像的梯度稀疏性建立L_p范数正则化模型,利用全变分范数保持图像的结构信息;然后,根据模糊核稀疏性的先验知识建立模糊核的盲估计模型;最后,提出一种渐近边界假设条件对模糊图像进行扩展以抑制振铃,并通过交替最小化方法分别求解清晰图像和模糊核的估计值。结果表明,所提出的方法简单、可行,具有更好的图像复原效果。

关键词(KeyWords): 盲复原;稀疏正则化;运动模糊图像;模糊核估计;边界条件

基金项目(Foundation): 国家自然科学基金项目(61562074,61961036);; 广西创新驱动发展专项资金项目(科技重大专项)(桂科AA18118036);; 广西自然科学基金项目(2018GXNSFBA281173,2018GXNSFAA294019);; 广西高校中青年教师基础能力提升项目(2017KY0629,2018KY0537)

作者(Author): 龚平,贺杰,a,刘娜,卢振坤

DOI: 10.13349/j.cnki.jdxbn.20200903.002

参考文献(References):

[1] FERGUS R,SINGH B,HERTZMANN A,et al.Removing camera shake from a single photograph[J].ACM Transactions on Graphics,2006,25(3):787-794.

[2] KRISHNAN D,TAY T,FERGUS R.Blind deconvolution using a normalized sparsity measure[C]//IEEE Conference on Computer Society Conference on Computer Vision and Pattern Recognition,June 20-25,2011,Colorado Springs,USA.New York:IEEE,2011:233-240.

[3] XU L,ZHENG S C,JIA J Y.Unnatural L0 sparse representation for natural image deblurring[C]//IEEE Conference on Computer Society Conference on Computer Vision and Pattern Recognition,June 23-28,2013,Portland,USA.New York:IEEE,2013:1107-1114.

[4] XU L,LU C W,XU Y,et al.Image smoothing via L0 gradient minimization[J].ACM Transactions on Graphics,2011,30(6):174.

[5] PAN J S,HU Z,SU Z X,et al.Deblurring text images via L0-regularized intensity and grandient prior[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR),June 23-28,2014,Columbus,USA:IEEE Computer Society,2014:2901-2908.

[6] 余义斌,吴承鑫,彭念,等.基于超拉普拉斯先验与核谱特性噪声图像盲去模糊[J].工程数学学报,2018,35(6):648-654.

[7] 秦绪佳,柯玲玲,范颖琳,等.改进的超拉普拉斯约束的单幅图像去模糊算法[J].小型微型计算机系统,2018,39(5):1097-1102.

[8] 王凯,肖亮,黄丽丽,等.优化重加权L1范数的图像盲复原算法[J].电子学报,2016,44(9):2175-2180.

[9] 李正周,卿琳,李博,等.基于稀疏先验的空间目标图像盲反演方法[J].光子学报,2020,49(2):0210001.

[10] 岳有军,云赛,王红君,等.基于暗通道与低秩先验的运动模糊图像盲复原[J].电光与控制,2019,26(11):95-98,110.

[11] CHO S H,LEE S Y.Convergence analysis of MAP based blur kernel estimation[C]//IEEE Conference on Computer Vision and Pattern Recognition,June 21-26,2017,Honolulu,USA.New York:IEEE,2017:4818-4826.

[12] 许影,李强懿.基于稀疏特性的盲二值图像去模糊[J].计算机科学,2018,45(3):255-259.

[13] 耿源谦,吴传生,刘文.混合非凸非光滑正则化约束的模糊图像盲复原[J].计算机应用,2020,40(4):1171-1176.

[14] 耿文波,姚遥.基于稀疏先验的运动模糊图像盲复原方法[J].电子测量与仪器学报,2018,32(8):132-139.

[15] 王灿,杨帆,李靖.基于l1/l2的高低阶全变差运动模糊图像盲复原方法[J].激光与光电子学进展,2018,55(4):041015.

[16] LIU R T,JIA J Y.Reducing boundary artifacts in image deconvolution[C]//IEEE International Conference on Image Processing,October 12-15,2008,New York,USA.New York:IEEE,2008:505-508.

[17] ZHOU X,ZHOU F G,BAI X Z,et al.A boundary condition based deconvolution framework for image deblurring[J].Journal of Computational and Applied Mathematics,2014,261:14-29.

[18] 赵明华,张鑫,石争浩,等.正弦积分拟合的图像复原边界振铃效应抑制方法[J].中国图象图形学报,2017,22(2):249-256.

[19] 仇翔,戴明.基于L0稀疏先验的相机抖动模糊图像盲复原[J].光学精密工程,2017,25(9):2490-2498.

[20] PAN J S,LIU R S,SU Z X,et al.Motion blur kernel estimation via salient edges and low rank prior[C]//International Conference on Multimedia and Expo,July 14-18,2014,Chengdu,China.New York:IEEE,2014:1-6