2020年 05期

Quantized Feedback Control Systems with Network Attacks


摘要(Abstract):

为了提高网络系统的安全性及可靠性,结合网络系统的数字特性,研究遭受网络攻击的量化反馈控制系统;针对具有对数量化反馈的受攻击系统,采用2组独立同分布的随机变量描述网络攻击的随机性与任意性;利用对数量化器的扇形界性质,将量化问题转化为鲁棒控制问题,得到判断系统安全性的充分条件,并借助线性矩阵不等式的解给出控制器的设计方法。数值例子计算结果表明,所提出的控制器设计方法是有效的。

关键词(KeyWords):网络攻击;量化反馈;依概率安全;控制器

基金项目(Foundation): 国家自然科学基金项目(61603241)

作者(Author): 吉明明

DOI: 10.13349/j.cnki.jdxbn.20200511.002

参考文献(References):

[1] 杨正飞.网络攻击分类及网络攻击系统模型研究[D].兰州:兰州大学,2006.

[2] DING D R,WANG Z D,HAN Q L,et al.Security control for discrete-time stochastic nonlinear systems subject to deception attacks[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(5):779-789.

[3] PANG Z H,LIU G P.Design and implementation of secure networked predictive control systems under deception attacks[J].IEEE Transactions on Control Systems Technology,2012,20(5):1334-1342.

[4] AMIN S,LITRICO X,SASTRY S,et al.Cyber security of water SCADA systems:Part I:analysis and experimentation of stealthy deception attacks[J].IEEE Transactions on Control Systems Technology,2013,21(5):1963-1970.

[5] TEIXEIRA A,SANDBERG H,JOHANSSON K H.Networked control systems under cyber attacks with applications to power networks[C]//Proceedings of the American Control Conference,June 30-July 2,2010,Baltimore,MD,USA.New York:IEEE,2010:3690-3696.

[6] JAMES M R,BARAS J,ELLIOTT R J.Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems[J].IEEE Transactions on Automatic Control,1994,39(4):780-792.

[7] PERRIG A,SZEWCZYK R,TYGAR J D,et al.Spins:security protocols for sensor networks[J].Wireless Networks,2002,8(5):521-534.

[8] GLOVER K,DOYLE J C.State space formulae for stabilizing controllers that satisfy an norm bound and relations to risk sensitivity[J].Systems & Control Letters,1988,11(3):167-172.

[9] 刘飞飞,蔺婧娜,刘潇潇.基于动态贝叶斯网络的复杂网络攻击方法研究[J].计算机工程与应用,2017,53(11):18-25,60.

[10] 游科友,谢立华.网络控制系统的最新研究综述[J].自动化学报,2013,39(2):101-118.

[11] ELIA N,MITTER S K.Stabilization of linear systems with limited information[J].IEEE Transactions on Automatic Control,2001,46(9):1384-1400.

[12] FU M Y,XIE L H.The sector bound approach to quantized feedback contro[J].IEEE Transactions on Automatic Control,2005,50(11):1698-1711.

[13] ZHOU B,DUAN G R,LAM J.On the absolute stability approach to quantized feedback control[J].Automatica,2010,46(2):337-346.

[14] CHU H Y,FEI S M,YUE D,et al.Quantized control for nonlinear networked control systems[J].Fuzzy Sets and Systems,2011,174(1):99-113.

[15] YAO D Y,LU R Q,XU Y,et al.Robust filtering for Markov jump systems with mode-dependent quantized output and partly unknown transition probabilities[J].Signal Processing,2017,137:328-338.

[16] ZANMA T,AZEGAMI M,LIU K Z.Optimal input and quantization interval for quantized feedback system with variable quantizer[J].IEEE Transactions on Industrial Electronics,2017,64(3):2246-2254.

[17] 黄可望,刘艳,潘丰.时延网络化控制系统的量化输出反馈耗散控制[J].计算机应用研究,2018,35(10):3053-3056.

[18] CHE W W,WANG J L,YANG G H.Quantised filtering for networked systems with random sensor packet losses[J].IET Control Theory & Applications,2010,4(8):1339-1352.

[19] HAYAKAWA T,ISHII H,TSUMURA K.Adaptive quantized control for nonlinear uncertain systems[J].Systems & Control Letters,2009,58(9):625-632.

[20] JI M M,CAI Y Z,ZHANG W D.Stabilization of discrete-time linear systems with quantization and arbitrary packet losses[J].Transactions of the Institute of Measurement and Control,2015,37(9):1084-1094.