摘要(Abstract):
为了修复被三氯乙烯污染的地下水,利用化学沉淀法制备纳米过氧化钙,采用柠檬酸钠强化Fe~(2+)催化效果,考察柠檬酸钠与Fe~(2+)的配比,以及纳米过氧化钙、柠檬酸钠-Fe~(2+)投加量等对修复效果的影响,并分析三氯乙烯的降解路径。结果表明:在中性条件下,柠檬酸钠-Fe~(2+)可以有效催化纳米过氧化钙降解地下水中的三氯乙烯;体系中纳米过氧化钙、柠檬酸钠-Fe~(2+)的浓度以及柠檬酸钠与Fe~(2+)的配比对三氯乙烯的降解有显著影响,降解反应符合伪一级动力学模型;在三氯乙烯浓度为0.16 mmol/L,柠檬酸钠与Fe~(2+)的物质的量比为1∶1,体系中纳米过氧化钙、柠檬酸钠-Fe~(2+)的浓度分别为2.88、 0.96 mmol/L时,反应3 h后三氯乙烯去除率可达98.0%。
关键词(KeyWords): 地下水修复;纳米过氧化钙;柠檬酸钠;三氯乙烯
基金项目(Foundation): 国家自然科学基金项目(21777056)
作者(Author): 刘玉仙,张克刚,丁冠涛,王晓东,彭圣洁
DOI: 10.13349/j.cnki.jdxbn.20200529.001
参考文献(References):
[1] POPAT S C,ZHAO K,DESHUSSES M A.Bioaugmentation of an anaerobic biotrickling filter for enhanced conversion of trichloroethene to ethene[J].Chemical Engineering Journal,2012,183:98-103.
[2] WU X L,GU X G,LU S G,et al.Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine[J].Separation and Purification Technology,2015,147:186-193.
[3] DATTA B,CHAKRABARTY D,DHAR A.Optimal dynamic monitoring network design and identification of unknown ground-water pollution sources[J].Water Resources Management,2009,23(10):2031-2049.
[4] SEOL Y,ZHANG H,SCHWARTZ F W.A review of in-situ chemical oxidation and heterogeneity[J].Environmental and Engineering Geoscience,2003,9(1):37-49.
[5] MASOMBOON N,RATANATAMSKUL C,LU M C.Chemical oxidation of 2,6-dimethylaniline in the Fenton process[J].Environmental Science Technology,2009,43(22):8629-8634.
[6] PIGNATELLO J J,OLIVEROS E,MacKAY A.Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J].Critical Reviews in Environmental Science and Technology,2006,36(1):1-84.
[7] ZHANG X,GU X G,LU S G,et al.Degradation of trichloro-ethylene in aqueous solution by calcium peroxide activated with ferrous ion[J].Journal of Hazardous Materials,2015,284:253-260.
[8] SUN Y F,PIGNATELLO J J.Chemical treatment of pesticide wastes:evaluation of iron(Ⅲ) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH[J].Journal of Agricultural and Food Chemistry,1992,40(2):322-327.
[9] SILLANP M,PIRKANNIEMI K.Recent developments in chelate degradation[J].Environmental Technology,2001,22(7):791-801.
[10] SCHMIDT C K,FLEIG M,SACHER F,et al.Occurrence of aminopolycarboxylates in the aquatic environment of Germany[J].Environmental Pollution,2004,131(1):107-124.
[11] 张祥.铁催化过氧化钙及其强化体系处理地下水中三氯乙烯的研究[D].上海:华东理工大学,2018.
[12] QIAN Y J,ZHOU X F,ZHANG Y L,et al.Performance and properties of nanoscale calcium peroxide for toluene removal[J].Chemosphere,2013,91(5):717-723.
[13] SUN Y,LYU S G,BRUSSEAU M L,et al.Degradation of trichloroethylene in aqueous solution by nanoscale calcium peroxide in the Fe(Ⅱ)-based catalytic environments[J].Separation and Purification Technology,2019,226:13-21.
[14] HAN D H,WAN J Q,MA Y W,et al.Enhanced decolorization of Orange G in a Fe(Ⅱ)-EDDS activated persulfate process by accelerating the regeneration of ferrous iron with hydroxylamine[J].Chemical Engineering Journal,2014,256:316-323.
[15] FERRARESE E,ANDREOTTOLA G,OPREA I A.Remediation of PAH-contaminated sediments by chemical oxidation[J].Journal of Hazardous Materials,2008,152(1):128-139.
[16] STASINAKIS A S.Use of selected advanced oxidation processes (AOPs) for wastewater treatment:a mini review[J].Global NEST Journal,2008,10(3):376-385.