摘要(Abstract):
针对目前配电网拓扑辨识方法在量测误差增大时误差率较高的问题,提出一种基于高级量测体系量测的图模型近邻估计的配电网拓扑辨识方法;该方法将相邻时刻高级量测体系的系统电压幅值量测之差视作高斯随机变量,建立由随机变量组成的概率图模型的精度矩阵估计模型,采用近邻估计算法求解图模型精度矩阵;根据精度矩阵的稀疏结构,采用生成树算法重建出配电网拓扑,并通过三相不平衡配电网算例和实际用电数据进行有效性验证。算例分析结果表明,该方法能够较好地辨识配电网拓扑结构。
关键词(KeyWords): 配电网;拓扑辨识;高级量测体系;图模型近邻估计
基金项目(Foundation): 国家电网有限公司科技项目(KJ19-1-23)
作者(Author): 刘超,王旭东,苏彦卓,丁一,梁栋
DOI: 10.13349/j.cnki.jdxbn.20200519.001
参考文献(References):
[1] 王彬,王治华,周宁慧,等.基于集合论估计的电网状态辨识(五):拓扑错误识别[J].电力系统自动化,2016,40(9):9-15.
[2] 马静,张俣妤,马伟,等.一种新型电网拓扑错误辨识方法[J].电力自动化设备,2016,36(1):82-88,96.
[3] 郭屾,王鹏,栾文鹏,等.基于PMU的配电网潮流雅可比矩阵鲁棒估计与拓扑辨识[J].电力系统及其自动化学报,2018,30(10):68-76.
[4] 徐弢,刘阳升,林济铿,等.规则法和混合法相结合的遥信错误辨识方法[J].电力系统自动化,2017,41(3):129-134.
[5] ARDAKANIAN O,WONG V W S,DOBBE R,et al.On identification of distribution grids[J].IEEE Transactions on Control of Network Systems,2019,6(3):950-960.
[6] LIAO Y Z,WENG Y,LIU G Y,et al.Urban MV and LV distribution grid topology estimation via group lasso[J].IEEE Transactions on Power Systems,2019,34(1):12-27.
[7] WENG Y,LIAO Y Z,RAJAGOPAL R.Distributed energy resources topology identification via graphical modeling[J].IEEE Transactions on Power Systems,2017,32(4):2682-2694.
[8] YU J F,WENG Y,RAJAGOPAL R.PaToPa:a data-driven parameter and topology joint estimation framework in distribution grids[J].IEEE Transactions on Power Systems,2018,33(4):4335-4347.
[9] CAVRARO G,KEKATOS V,VEERAMACHANENI S.Voltage analytics for power distribution network topology verification[J].IEEE Transactions on Smart Grid,2019,10(1):1058-1067.
[10] DEKA D,BACKHAUS S,CHERTKOV M.Structure learning in power distribution networks[J].IEEE Transactions on Control of Network Systems,2018,5(3):1061-1074.
[11] PAPPU S J,BHATT N,PASUMARTHY R,et al.Identifying topology of low voltage distribution networks based on smart meter data[J].IEEE Transactions on Smart Grid,2018,9(5):5113-5122.
[12] LUAN W P,PENG J,MARAS M,et al.Smart meter data analytics for distribution network connectivity verification[J].IEEE Transactions on Smart Grid,2015,6(4):1964-1971.
[13] 闫卫国,王高猛,林济铿,等.基于AMI量测信息的低压配电网拓扑校验方法[J].中国电力,2019,52(2):125-133.
[14] JEROME F,TREVOR H,ROBERT T.Sparse inverse covariance estimation with the graphical LASSO[J].Biostatistics,2008,9(3):432-441.
[15] UK Power Networks.Smart meter energy consumption data in london households [EB/OL].(2014-02-28)[2019-09-08].https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households.
[16] DUGAN R C.Reference guide:the open distribution system simulatorTM (OpenDSS)[R].Palo Alto,USA:Electrc Power Research Institute,2013.