2020年 04期

Numerical Simulation of Gas-Solid Flow Characteristics in a Reducing Fluidized Bed Reactor


摘要(Abstract):

采用计算颗粒流体力学(CPFD)的数值模拟方法,对直径为160 mm、高度为273 3 mm的变径流化床反应器内的气固流动特性进行冷态模拟,研究不同气速及不同初始物料量对流化床反应器气固流动特性的影响,得到流化床内颗粒体积分数、颗粒速度以及颗粒停留时间的分布。结果表明,当气速不小于2.5 m/s时,流化床内颗粒体积分数轴向分布更为均匀,颗粒速度呈中间高、两边低的倒"U"形分布;壁面附近的颗粒停留时间长于中心处,使得壁面附近的颗粒趋于聚集;流化床的轴径向颗粒体积分数随着初始物料量的增加而增大。

关键词(KeyWords): 流化床;气-固两相流;流动特性;数值模拟

基金项目(Foundation): 国家自然科学基金项目(21766034);; 新疆维吾尔自治区自然科学基金项目(2016D01C035)

作者(Author): 陈艳,张亚新

DOI: 10.13349/j.cnki.jdxbn.2020.04.011

参考文献(References):

[1] KOPYSCINSKI J,SCHILDHAUER T J,BIOLLAZ S M A.Methanation in a fluidized bed reactor with high initial CO partial pre-ssure:Part I:experimental investigation of hydrodynamics,mass transfer effects,and carbon deposition[J].Chemical Engineering Science,2011,66(5):924-934.

[2] SUN L Y,LUO K,FAN J R.Production of synthetic natural gas by CO methanation over Ni/Al2O3 catalyst in fluidized bed reactor[J].Catalysis Communications,2018,105:37-42.

[3] 王春燕.有机硅单体合成流化床的多相流模拟与流化特性研究[D].青岛:青岛科技大学,2009.

[4] 王林,李明,邵媛媛,等.生物颗粒循环量对循环流化床生物反应器性能影响的研究[J].水处理技术,2018,44(8):61-65,70.

[5] 韩天义,姚远,徐珺,等.吸湿剂、表面活性剂及催化剂对烟气循环流化床脱硫的增效机制[J].化工学报,2018,69(9):4044-4050.

[6] 张勇,金保升,钟文琪,等.喷动流化床颗粒混合特性的三维直接数值模拟[J].中国电机工程学报,2008,28(2):33-38.

[7] 李斌,周遵凯,姚路,等.流化床内不同密度颗粒流动特性的数值模拟[J].动力工程学报,2014,34(12):932-937,971.

[8] LAN X Y,SHI X G,ZHANG Y H,et al.Solids back-mixing behavior and effect of the mesoscale structure in CFB risers[J].Industrial & Engineering Chemistry Research,2013,52(34):11888-11896.

[9] ZHANG Y W,LEI F L,WANG S D,et al.A numerical study of gas-solid flow hydrodynamics in a riser under dense suspension upflow regime[J].Powder Technology,2015,280:227-238.

[10] SMOLDERS K,BAEYENS J.Overall solids movement and solids residence time distribution in a CFB-riser[J].Chemical Engineering Science,2000,55(19):4101-4116.

[11] WANG Q G,YANG H R,WANG P N,et al.Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal:Part II:investigation of solids circulation[J].Powder Technology,2014,253(2):822-828.

[12] SNIDER D M.An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J].Journal of Computational Physics,2001,170(2):523-549.

[13] 张峰,张亚新,马凤云,等.流化-输送床中煤的气力分级数值模拟分析[J].煤炭转化,2017,40(5):13-19.

[14] SHI X G,LAN X Y,LIU F,et al.Effect of particle size distribution on hydrodynamic and solids back-mixing CFB risers using CPFD simulation[J].Powder Technology,2014,266:135-143.

[15] FOTOVAT F,ABBASI A,SPITERI R J,et al.A CPFD model for a bubbly biomass-sand fluidized bed[J].Powder Technology,2015,275:39-50.

[16] 邱桂芝,叶佳敏,王海刚,等.大型循环流化床环形炉膛中气固流动特性的CPFD数值模拟[J].中国科学院大学学报,2016,33(2):218-222.

[17] ANDREWS M J,O’ROURKE P J.The multiphase particle-in-cell(MP-PIC) method for dense particulate flows[J].International Journal of Multiphase Flow,1996,22(2):379-402.

[18] SNIDER D M.Three fundamental granular flow experiments and CPFD predictions[J].Powder Technology,2007,176(1):36-46.

[19] 彭丽.高密度循环流化床气固流动规律及流动-反应耦合特性数值模拟[D].中国石油大学(北京),2017.