参考文献(References):
[1] AZIM S,GANGOPADHYAY S,MAHAPATRA S S,et al.Study of cutting forces and surface integrity in micro drilling of a Ni-based superalloy[J].Journal of Manufacturing Processes,2019,45:368-378.
[2] PIOTR N,WIT G,KRZYSZTOR J,et al.FEM-based optimization of machining operations of aerospace parts made of Inconel 718 superalloy[J].Procedia CIRP,2018,77:570-573.
[3] 赵娜.高温合金Inconel 625本构模型及切削过程仿真研究[D].哈尔滨:哈尔滨理工大学,2016.
[4] 于敏,蔡凯洪,李振瑞,等.低膨胀高温合金概述[J].金属材料研究,2017,43(2):21-26.
[5] 庞继有,胡家农,于在梅,等.航空发动机刀具切削加工现状与发展[J].航空制造技术,2009(13):40-43.
[6] FAN Y H,HAO Z P,LIN J Q,et al.New observations on tool wear mechanism in machining Inconel 718 under water vapor+air cooling lubrication cutting conditions[J].Journal of Cleaner Production,2015,90:381-387.
[7] 薄鑫涛.高温合金的切削加工:刀具材料与PVD涂层[J].热处理,2017,32(2):23-23.
[8] 杜金辉,赵光普,邓群,等.中国变形高温合金研制进展[J].航空材料学报,2016,36(3):27-39.
[9] 张勇,李佩桓,贾崇林,等.变形高温合金纯净熔炼设备及工艺研究进展[J].材料导报,2018,32(9):1496-1506.
[10] 刘高群.铸造镍基高温合金K418切削性能试验研究[D].南京:南京理工大学,2006.
[11] 张健,楼琅洪.铸造高温合金研发中的应用基础研究[J].金属学报,2018,54(11):1637-1652.
[12] 王辉.镍基粉末冶金高温合金钻削仿真与试验研究[D].济南:济南大学,2016.
[13] 张义文,刘建涛.粉末高温合金研究进展[J].中国材料进展,2013,32(1):1-11.
[14] 唐丽娜,杨强,张天德.多次真空固溶处理对GH1131高温合金组织和力学性能的影响[J].金属热处理,2020,45(1):53-55.
[15] 冯振兴.涂层硬质合金刀具切削铁基高温合金试验研究[D].大连:大连理工大学,2013.
[16] 张颖琳,陈五一.镍基高温合金铣削加工的残余应力研究[J].航空制造技术,2016,498(3):42-47.
[17] 李国栋.高密度电脉冲处理对镍基高温合金组织及性能的影响[D].沈阳:东北大学,2008.
[18] 曹亮亮.定向凝固钴基高温合金DZ40M的TLP连接工艺及机理研究[D].哈尔滨:哈尔滨工业大学,2018.
[19] 薄鑫涛.高温合金的强化[J].热处理,2018,33(4):40-40.
[20] THAKUR D G,RAMAMOORTHY B,VIJAYARAGHAVAN L,et al.Study on the machinability characteristics of superalloy Inconel 718 during high speed turning[J].Materials & Design,2009,30(5):1718-1725.
[21] 谢锡善,董建新,付书红,等.γ″和γ′相强化的Ni-Fe基高温合金GH4169的研究与发展[J].金属学报,2010,46(11):1289-1302.
[22] 鲍庆煌,叶兵,蒋海燕,等.镍基高温合金耐腐蚀性能的研究进展[J].材料导报,2015,29(17):128-134.
[23] 管秀荣,魏健,刘恩泽,等.Ti含量对镍基高温合金抗热腐蚀性能的影响[J].稀有金属材料与工程,2012,41(11):1990-1994.
[24] 郝兆朋,崔瑞瑞,范依航.切削镍基高温合金GH4169的刀具磨损机理研究[J].长春工业大学学报,2018,39(1):8-13.
[25] RAMANUJAM R,VENKATESAN K,SAXENA V,et al.Modeling and optimization of cutting parameters in dry turning of Inconel718 using coated carbide inserts[J].Procedia Materials Science,2014,5:2550-2559.
[26] LI W,GUO Y B,BARKEY M E,et al.Effect tool wear during end milling on the surface integrity and fatigue life of Inconel 718[J].Procedia CIRP,2014,14:546-551.
[27] 刘丽娟,张国永,邵华.高温合金NiCr20TiAl钻削加工特性研究[J].工具技术,2011,45(11):16-20.
[28] 訾凯崧,关占群.用铝高速钢加工高温合金(GH698)[J].汽轮机技术,2004,46(2):154,156.
[29] 隋胜涛,庞继友,刘军喆.高温合金材料拉削工艺的研究[J].机械工程师,2018(5):157-158,161.
[30] 程剑兵,庞思勤,王西彬,等.硬质合金刀具车削GH2132高温合金磨损及破损试验[J].北京理工大学学报(自然科学版),2013,33(9):911-915.
[31] 方涛.硬质合金抛光刀片加工镍基高温合金的切削性能试验研究[D].湘潭:湘潭大学,2017.
[32] BHATT A,ATTIA H,VARGAS R,et al.Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel718[J].Tribology International,2010,43(5):1113-1121.
[33] FOX-RABINOVICH G S,YAMAMOTO K,AGUIRRE M H,et al.Multi-functional nano-multilayered AlTiN/Cu PVD coating for machining of Inconel718 superalloy[J].Surface and Coatings Technology,2010,204(15):2465-2471.
[34] YI J Y,SONG Y C,XU Y C,et al.Effects of Ni content on microstructure,mechanical properties and Inconel718 cutting performance of AlTiN-Ni nanocomposite coatings[J].Ceramics International,2019,45:474-480.
[35] 孙士雷,赵杰.陶瓷刀具铣削高温合金GH4169刀具磨损研究[J].工具技术,2015,49(8):47-50.
[36] DANIEL F,MARCUS S,FRIEDRICH B.End milling of Inconel718 using solid Si3N4 ceramic cutting tools[J].Procedia CIRP,2019,81:1131-1135.
[37] DAMIR G,MATJAZ K,FRANCI P.Suitability of the full body ceramic end milling tools for high speed machining of nickel based alloy Inconel718[J].Procedia CIRP,2018,77:630-633.
[38] VICTOR C,JOSE D,LUSI C.Study of the performance of PCBN and carbide tools in finishing machining of Inconel718 with cutting fluid at conventional pressures[J].Procedia CIRP,2018,77:634-637.
[39] TAZEHKANDI A,SHABGARD M,KIANI G,et al.Investigation of the influences of polycrystalline cubic boron nitride (PCBN) tool on the reduction of cutting fluid consumption and increase of machining parameters range in turning Inconel783 using spray mode of cutting fluid with compressed air[J].Journal of Cleaner Production,2016,135:1637-1649.
[40] YILDIRIM C V,SARIKAYA M,KIVAK T,et al.The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns,tool life,roughness and temperature in turning of Ni-based Inconel625[J].Tribology International,2019,134:443-456.
[41] KAMAL K J,RANJAN K.Effect of minimum quantity lubrication with Al2O3 nanofluid on surface roughness and its prediction using hybrid fuzzy controller in turning operation of Inconel600[J].Materials Today:Proceedings,2018,5(9):20660-20668.
[42] KNUT S,ZYDRUNAS V.High-pressure cooling in turning of Inconel625 with ceramic cutting tools[J].Procedia CIRP,2018,77:74-77.
[43] LOKMAN Y,OGUZ C,CAHIT K.Taguchi DOE analysis of surface integrity for high pressure jet assisted machining of Inconel718[J].Procedia CIRP,2014,13:333-338.
[44] EZUGWU E,BONNEY J.Effect of high-pressure coolant supplies when machining nickel-base,Inconel718,alloy with ceramic tools[J].Tribology Transactions,2003,46(4):580-584.
[45] HALIM N H A,CHE-HARON C H,GHANI J A,et al.Tool wear and chip morphology in high-speed milling of hardened Inconel718 under dry and cryogenic CO2 conditions[J].Wear,2019,426/427(Part B):1683-1690.
[46] HE Z H,ZHANG X,DING H.Comparison of residual stresses in cryogenic and dry machining of Inconel718[J].Procedia CIRP,2016,46:19-22.
[47] MUSFIRAH A H,GHANI J A,CHE-HARON C H.Tool wear and surface integrity of Inconel718 in dry and cryogenic coolant at high cutting speed[J].Wear,2017,376/377(Part A):125-133.