摘要(Abstract):
以三甲基镓(TMGa)和氮气(N_2)分别作为镓和氮反应源,采用电子回旋共振等离子体增强金属有机物化学气相沉积(ECR-PEMOCVD)技术在镀铜玻璃衬底上沉积出氮化镓(GaN)薄膜,采用高能电子衍射(RHEED)、X射线衍射(XRD)、原子力显微镜(AFM)和光致发光(PL)测试手段,表征分析TMGa流量对GaN薄膜的结晶性能、光学性能及表面形貌特性的影响。结果表明,TMGa流量对所制备的薄膜性能的影响很大, TMGa体积流量为1.4 mL/min时,GaN薄膜具有较强的c轴择优取向和良好的表面光滑度,晶粒较大且均匀,室温PL光谱显示在354 nm处有较高强度的光致发光峰,因带隙调制而产生光学带隙的蓝移。
关键词(KeyWords): 氮化镓薄膜;等离子体增强技术;镀铜玻璃衬底
基金项目(Foundation): 国家自然科学基金项目(51872036);; 辽宁省自然科学基金项目(20180510049);; 辽宁省科技厅博士启动基金项目(20170520241);; 辽宁省“兴辽英才计划”青年拔尖人才项目(XLYC1907138);; 辽宁省教育厅重点攻关项目(JL-1901)
作者(Author): 李昱材,苏媛媛,赵琰,宋世巍,王健,王刚,唐坚,刘嘉欣,张东
DOI: 10.13349/j.cnki.jdxbn.2020.03.004
参考文献(References):
[1] GHOSH S,HOLLIS M A,MOLNAR R J,et al.Acoustoelectric amplification of Rayleigh waves in low sheet density AlGaN/GaN heterostructures on sapphire[J].Appl Phys Lett,2019,114:063502.
[2] LALETAN D A,LIU X H,PANDEY A,et al.Molecular beam epitaxy and characterization of Al0.6Ga0.4N epilayers[J].Journal of Crystal Growth,2019,507:87-92.
[3] LEE D,LEE S,KIM G,et al.Epitaxial lateral overgrowth of GaN on nano-cavity patterned sapphire substrates[J].Journal of Crystal Growth,2019,507:103-108.
[4] OKADA N,INOMATA Y,IKEUCHI H ,et al.Characterization of high-quality relaxed flat InGaN template fabricated by combination of epitaxial lateral overgrowth and chemical mechanical polishing[J].Journal of Crystal Growth,2019,512:147-151.
[5] YANG W X,ZHAO Y K,WU Y Y,et al.Deep-UV emission at 260 nm from MBE-grown AlGaN/AlN quantum-well structures[J].Journal of Crystal Growth,2019,512:213-218.
[6] RODRIGUES J,FIALHO M,MAGALHAES S,et al.Luminescence properties of MOCVD grown Al0.2Ga0.8N layers implanted with Tb[J].Journal of Crystal Growth,2019,210:413-424.
[7] PRABAKARAM K,JAYASAKTHI M,SURENDER S,et al.Structural,morphological,optical and electrical characterization of InGaN/GaN MQW structures for optoelectronic applications[J].Journal of Crystal Growth,2019,476:993-999.
[8] KRUSZEWSKI P,PRYSTAWKO P,GRABOWSKI M,et al.Electrical properties of vertical GaN Schottky diodes on Ammono-GaN substrate[J].Materials Science in Semiconductor Processing,2019,96:132-136.
[9] PRYSTAWKO P,GIANNAZZO F,KRYSKO M,et al.Growth and characterization of thin Al-rich AlGaN on bulk GaN as an emitter-base barrier for hot electron transistor[J].Materials Science in Semiconductor Processing,2019,93:153-157.
[10] GUZIEWICZ M,TAUBE A,EKIELSKI M,et al.Structural and electrical studies on Ti/Al-based Au-free ohmic contact metallization for AlGaN/GaN HEMTs[J].Materials Science in Semiconductor Processing,2019,96:153-160.
[11] QAMAR A,RAIS-ZADEH M.Coupled BAW/SAW resonators using AlN/Mo/Si and AlN/Mo/GaN layered structures[J].IEEE Electron Device Letters,2019,40(2):321-324.
[12] SEOL J H,HAHM S H.Selective ohmic contact formation on schottky type AlGaN/GaN UV sensors using local breakdown[J].IEEE Sensors Journal,2019,19(8):2946-2949.
[13] KHADAR R A,LIU C,SOLEIMANZADEH R,et al.Fully vertical GaN-on-Si power MOSFETs[J].IEEE Electron Device Letters,2019,40(3):443-446.
[14] ZHANG W H,ZHAO M,ZHANG J H,et al.Analysis of leakage mechanisms in AlN nucleation layers on p-Si and p-SOI substrates[J].IEEE Transactions on Electron Devices,2019,66(4):1849-1855.
[15] PARK T H,LEE T H,KIM T G,et al.Al2O3/AlN/Al-based backside diffuse reflector for high-brightness 370 nm AlGaN ultraviolet light-emitting diodes[J].Journal of Crystal Growth,2019,776:1009-1015.
[16] ZHANG D,QIN F W,BAI Y Z ,et al.Effect of buffer layer on the structural and morphological properties of GaN films grown with ECR-PEMOCVD[J].Diamond and Related Materials,2012,21:88-91.
[17] ZHANG D,BIAN J M,QIN F W,et al.Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices[J].Materials Research Bulletin,2011,46:1582-1585.