参考文献(References):
[1] 韩晓露,刘云,张振江,等.基于IFS-NARX模型的网络安全态势预测[J].吉林大学学报(工学版),2019,49(2):592-598.
[2] YANG S,YIN D,SONG X,et al.Security situation assessment for massive MIMO systems for 5G communications[J].Future Generation Computer Systems,2019,98:25-34.
[3] FAN Z,XIAO Y,NAYAK A,et al.An improved network security situation assessment approach in software defined networks[J].Peer-to-Peer Networking and Applications,2019,12(2):295-309.
[4] 张任川,张玉臣,刘璟,等.应用改进卷积神经网络的网络安全态势预测方法[J].计算机工程与应用,2019,55(6):86-93.
[5] 孙卫喜,孙欢.网络安全态势预测技术研究[J].计算机技术与发展,2019,29(4):100-104.
[6] GAO J,BAI H,WANG D,et al.Rapid security situation prediction of smart grid based on Markov chain[C]//2019 IEEE 3rd Information Technology,Networking,Electronic and Automation Control Conference,March 15-17,2019,Chengdu,China.New York:IEEE,2019:2386-2389.
[7] XIAO J,ZHANG B,LUO F.Distribution network security situation awareness method based on security distance[J].IEEE Access,2019,7:37855-37864.
[8] 杨茹,王立中.复杂网络安全态势实时预测方法仿真[J].计算机仿真,2018,35(11):426-430.
[9] 陈玉鑫,殷肖川,谭韧.一种基于GSA-SVM网络安全态势预测模型[J].空军工程大学学报(自然科学版),2018,19(5):78-83.
[10] 周新卫,李小玲.基于改进G-K算法的多节点网络安全态势预测模型[J].科学技术与工程,2018,18(25):72-77.
[11] KAMAL A E,HAN L,LU L,et al.Guest editorial:special issue on software defined networking:trends,challenges,and prospective smart solutions[J].Peer-to-Peer Networking and Applications,2019,12(2):291-294.
[12] WU Y K,HUANG H,WU Q,et al.A risk defense method based on microscopic state prediction with partial information observations in social networks[J].Journal of Parallel and Distributed Computing,2019,131:189-199.
[13] 江洋,李成海,魏晓辉,等.改进PSO优化RBF的网络安全态势预测研究[J].测控技术,2018,37(5):56-60.
[14] 吴建台,乔翌峰,朱赛凡,等.基于HMM的网络安全态势评估与预测方法[J].导航与控制,2018,17(2):10-17,31.
[15] 高铁山.基于时空维度分析的网络安全态势预测方法[J].网络安全技术与应用,2018(3):20-21.
[16] HAN Z,LI X,HUANG K,et al.A software defined network-based security assessment framework for cloudIoT[J].IEEE Internet of Things Journal,2018,5(3):1424-1434.