2020年 01期

Three-dimensional Computational Fluid Dynamics Simulation of Vortex Induced Vibration for Fibre Reinforced Polymer Composite Marine Riser with Fluid-Structure Interaction

摘要(Abstract):

对正交式纤维增强复合材料海洋立管、优化后的纤维增强复合材料海洋立管和金属海洋立管进行基于流固耦合作用的三维计算流体动力学涡激振动模拟,探索不同材料的海洋立管的涡激振动特征;通过等效弹性模量法及层状结构法分别构建3种整体模型,通过System coupling模块与Fluent软件模拟所得的流场结果进行交互,以实现二者之间的耦合作用,并对比不同建模方式及不同种类立管在涡激振动作用下立管位移和应力响应的影响。结果表明:不同建模方式所得的涡激振动特征相近;结构的构造不同使得优化后的纤维增强复合材料海洋立管的位移及应力响应均大于正交式纤维复合材料海洋立管的;在涡激振动作用下,纤维增强复合材料海洋立管的振动幅值大于金属海洋立管的,其应力幅值小于金属海洋立管的,并且二者的变形与应力分布特征也显著不同,与不同种类海洋立管的几何构造尺寸、弹性模量、顶张力、支撑条件等有关。

关键词(KeyWords):涡激振动;纤维复合材料海洋立管;流固耦合作用;计算流体动力学;数值模拟

基金项目(Foundation): 国家自然科学基金项目(51806130);; 山东省重点研发计划项目(2019GHY112076);; 山东省自然科学基金项目(ZR2017LEE031);; 山东省淄博市科技发展计划项目(2017KJ040017)

作者(Author): 葛士权,王春光,孙明钰,王有镗

DOI: 10.13349/j.cnki.jdxbn.2020.01.001

参考文献(References):

[1] OCHOA O O,SALAMA M M.Offshore composites:transition barriers to an enabling technology[J].Composite Science Technology,2005,65(15/16):2588-2596.

[2] SALAMA M M,JOHNSON D B,LONG J R.Composite production riser-testing and qualification[J].SPE Production and Facilities,1998,13(3):170-177.

[3] SPARKS C P,ODRU P,BONO H,et al.Mechanical testing of high-performance composite tubes for TLP production risers[C]//Proceedings of the Annual Offshore Technology Conference,May 2-5,1988,Houston,USA.Texas:Curran Associates,Inc,1988:467-472.

[4] FENG C C.The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D].Vancouver:The University of British Columbia,1968.

[5] MOE G,WU Z J.The lift force on a cylinder vibrating in a current[J].Journal of Offshore Mechanics and Arctic Engineering,1990,112(4):297-303.

[6] 崔阳阳,王春光,陈正发,等.基于灰色理论的多参数海洋立管涡激振动试验研究[J].科学技术与工程,2018,18(13) :207-213.

[7] 吴学敏,黄维平.考虑大变形的大柔性立管涡激振动模型[J].振动与冲击,2013,32(18):21-25,30.

[8] 唐友刚,邵卫东,张杰,等.深海顶张力立管参激-涡激耦合振动响应分析[J].工程力学,2013,30(5):282-286.

[9] LI Z M,LIN Z Q.Non-linear buckling and postbuckling of shear deformable anisotropic laminated cylindrical shell subjected to varying external pressure loads[J].Composite Structures,2010,92(2):553-567.

[10] TAN L B,CHEN Y,JAIMAN R K,et al.Coupled fluid-structure simulations for evaluating a performance of full-scale deepwater composite riser[J].Ocean Engineering,2015,94:19-35.

[11] HUANG K Z.Composite TTR design for an ultradeepwater TLP[C]//Proceedings of the Annual Offshore Technology Conference,May 2-5,2005,Houston,USA.Texas:Curran Associates,Inc,2005:316-324.

[12] CHEN Y,TAN L B,JAIMAN R K,et al.Global-local analysis of a full-scale composite riser during vortex-induced vibration[C]//Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,June 9-14,2013,New York,USA.New York:ASME,2013:1-8.

[13] WANG C,SHANKAR K,MOROZOV E V.Tailored local design of deep sea FRP composite risers[J].Advanced Composite Materials,2015,24(4):375-397.

[14] SUN C T,LI S.Three-dimensional effective elastic constant for thick laminates[J].Journal of Composite Materials,1988,22:629-639.

[15] LIENHARD J H.Synopsis of lift,drag and vortex frequency data for rigid circular cylinders:research division bulletin 300[R].Washington:Washington State University,1966.

[16] BLEVINS R D.Flow-induced vibration[M].2nd ed.Florida:Krieger Publishing Company,2001.