参考文献(References):
[1] 张敏. 南四湖沉积物-水界面典型重金属的迁移特征和释放风险研究[D]. 济南: 济南大学, 2021
[2] 李志建. 南四湖沉积物内源污染释放规律与水质响应的关系研究[D]. 济南:山东大学, 2011.
[3] DOH T, LO SL, CHIUEH PT, et al. Optimal design of river nutrient monitoring points based on an export coefficient model[J]. Journal of Hydrology, 2011, 406(1–2): 129-135.
[4] WU Z H, WANG S R. Release mechanism and kinetic exchange for phosphorus (P) in lake sediment characterized by diffusive gradients in thin films (DGT)[J]. Journal of Hazardous Materials, 2017, 331: 36-44.
[5] GAO L, GAO B, ZHOU H D, et al. Assessing the remobilization of Antimony in sediments by DGT: a case study in a tributary of the Three Gorges Reservoir[J]. Environmental Pollution, 2016, 214: 600-607.
[6] 李财, 任明漪, 石丹, 等. 薄膜扩散梯度(DGT): 技术进展及展望[J]. 农业环境科学学报, 2018, 37(12): 2613-2628.
[7] CHEN M S, DING S M, ZHANG L P, et al. An investigation of the effects of elevated phosphorus in water on the release of heavy metals in sediments at a high resolution[J]. Science of The Total Environment, 2017, 575: 330-337.
[8] 马玉珅, 朱翔, 庞晴晴, 等. 基于DGT技术的黄河上游典型水库沉积物氮磷释放与污染源解析[J]. 环境科学, 2022, 43(5): 2527-2536.
[9] 任静雯, 王佳俊, 周磊, 等. 拉鲁湿地沉积物碳氮磷分布及污染风险评价[J]. 生态与农村环境学报, 2021, 37(2): 172-181.
[10] 石丹, 马欣, 杨丽原, 等. 基于DGT技术评估南四湖沉积物-水界面中Cr, Mo和W的潜在释放风险[J]. 海洋湖沼通报, 2020(4): 101-107.
[11] MA X, LI C, YANG L Y, et al. Evaluating the mobility and labile of As and Sb using diffusive gradients in thin-films (DGT) in the sediments of Nansi Lake, China[J]. Science of The Total Environment, 2020, 713(C): 136569.
[12] GAO Y, LESVEN L, GILLAN D, et al. Geochemical behavior of trace elements in sub-tidal marine sediments of the Belgian coast[J]. Marine Chemistry, 2009, 117(1): 88-96.
[13] DING S M, HAN C, WANG Y P, et al. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake[J]. Water Research, 2015, 74: 100-109.
[14] 徐好,桑国庆, 杨丽原, 等.近十年来南四湖水质时空变化特征研究[J].海洋湖沼通报,2019,7(2):47-52.
[15] 王洪伟, 王少明, 张敏, 等. 春季潘家口水库沉积物-水界面氮磷赋存特征及迁移通量[J]. 中国环境科学, 2021, 41(9): 4284-4293.
[16] 宋雅涓, 谢海燕, 张洁, 等. 东道海子表层沉积物氮营养盐及有机质分布及评价[J]. 新疆农业大学学报, 2016, 39(4): 324-331.
[17] DING S M, SUN Q, XU D. Development of the DET technique for high-resolution determination of soluble reactive phosphate profiles in sediment pore waters[J]. International Journal of Environmental Analytical Chemistry, 2010, 90(14–15): 1130-1138.
[18] WU Z H, JIANG X, WANG S H, et al. Mobilization and geochemistry of nutrients in sediment evaluated by diffusive gradients in thin films: significance for lake management[J]. Journal of Environmental Management 2021, 292: 112770.
[19] BEUTEL M W, LEONARD T M, DENT S R, et al. Effects of aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake[J]. Water Research, 2008, 42(8–9): 1953-1962.
[20] 谭晓波. 南四湖下级湖区及其主要河流沉积物磷污染特征与修复研究[D]. 济南: 山东建筑大学, 2011
[21] 潘婵娟. 三峡水库正常蓄水后沉积物磷形态特征研究[D]. 宜昌: 三峡大学, 2018 [2022-09-01]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.27270/d.cnki.gsxau.2018.000442&dbcode=CMFD
[22] 宋佳宇, 范俊欣, 刘思敏, 等. 再生水补给下塘-湿地系统表层土磷形态分布[J]. 环境科学与技术, 2014, 37(3): 140-145.
[23] YIN H B, CAI Y J, DUAN H T, et al. Use of DGT and conventional methods to predict sediment metal bioavailability to a field inhabitant freshwater snail (Bellamya aeruginosa) from Chinese eutrophic lakes[J]. Journal of Hazardous Materials, 2014, 264(15): 184-194.
[24] YUAN H, TAI Z, LI Q, et al. In-situ, high-resolution evidence from water-sediment interface for significant role of iron bound phosphorus in eutrophic lake[J]. Science of The Total Environment, 2020, 706(C): 136040.