2024年 01期

南四湖出湖口沉积物-水界面中营养盐分布特征分析及释放风险评估

Distribution Characteristic Analysis and Releasing Risk Assessment of Nutrients in Sediment-Water Interface at Outlet of the Nansi Lake

摘要(Abstract):

为了解决南四湖出湖口沉积物-水界面中磷酸盐、氨氮和硝态氮等营养盐释放风险控制缺乏科学依据的问题,利用薄膜扩散梯度技术、高分辨率孔隙水采样技术分析南四湖出湖口沉积物-水界面中营养盐浓度的垂直剖面分布特征,并根据有效态磷、有效态氨氮和有效态硝态氮的浓度,计算三者的净扩散通量,评估三者的释放风险。结果表明:非泄洪期南四湖出湖口上覆水中的溶解态磷浓度低于孔隙水中的,表明沉积物孔隙水中的溶解态磷可能会因浓度梯度的存在而向上覆水中扩散;根据连续分级提取法,钙结合态磷是南四湖出湖口沉积物中磷元素的主要赋存形态,表层沉积物中的不稳定磷元素含量高于深层沉积物中的;有效态磷与有效态铁呈显著正相关,说明南四湖出湖口沉积物-水界面中有效态磷的释放受铁氧化物还原释放影响;有效态磷、有效态氨氮和有效态硝态氮的净扩散通量分别为17.58、 1.16、-40.72 ng/(cm2·d),说明有效态磷和有效态氨氮有从沉积物向上覆水中释放的潜在风险。

关键词(KeyWords): 环境科学;净扩散通量;薄膜扩散梯度技术;营养盐;沉积物-水界面;南四湖;

基金项目(Foundation): 国家自然科学基金项目(42177385);

作者(Author): 王津,杨丽原,刘恩峰,栾日坚

DOI: 10.13349/j.cnki.jdxbn.20230329.002

参考文献(References):

[1] 张敏. 南四湖沉积物-水界面典型重金属的迁移特征和释放风险研究[D]. 济南: 济南大学, 2021

[2] 李志建. 南四湖沉积物内源污染释放规律与水质响应的关系研究[D]. 济南:山东大学, 2011.

[3] DOH T, LO SL, CHIUEH PT, et al. Optimal design of river nutrient monitoring points based on an export coefficient model[J]. Journal of Hydrology, 2011, 406(1–2): 129-135.

[4] WU Z H, WANG S R. Release mechanism and kinetic exchange for phosphorus (P) in lake sediment characterized by diffusive gradients in thin films (DGT)[J]. Journal of Hazardous Materials, 2017, 331: 36-44.

[5] GAO L, GAO B, ZHOU H D, et al. Assessing the remobilization of Antimony in sediments by DGT: a case study in a tributary of the Three Gorges Reservoir[J]. Environmental Pollution, 2016, 214: 600-607.

[6] 李财, 任明漪, 石丹, 等. 薄膜扩散梯度(DGT): 技术进展及展望[J]. 农业环境科学学报, 2018, 37(12): 2613-2628.

[7] CHEN M S, DING S M, ZHANG L P, et al. An investigation of the effects of elevated phosphorus in water on the release of heavy metals in sediments at a high resolution[J]. Science of The Total Environment, 2017, 575: 330-337.

[8] 马玉珅, 朱翔, 庞晴晴, 等. 基于DGT技术的黄河上游典型水库沉积物氮磷释放与污染源解析[J]. 环境科学, 2022, 43(5): 2527-2536.

[9] 任静雯, 王佳俊, 周磊, 等. 拉鲁湿地沉积物碳氮磷分布及污染风险评价[J]. 生态与农村环境学报, 2021, 37(2): 172-181.

[10] 石丹, 马欣, 杨丽原, 等. 基于DGT技术评估南四湖沉积物-水界面中Cr, Mo和W的潜在释放风险[J]. 海洋湖沼通报, 2020(4): 101-107.

[11] MA X, LI C, YANG L Y, et al. Evaluating the mobility and labile of As and Sb using diffusive gradients in thin-films (DGT) in the sediments of Nansi Lake, China[J]. Science of The Total Environment, 2020, 713(C): 136569.

[12] GAO Y, LESVEN L, GILLAN D, et al. Geochemical behavior of trace elements in sub-tidal marine sediments of the Belgian coast[J]. Marine Chemistry, 2009, 117(1): 88-96.

[13] DING S M, HAN C, WANG Y P, et al. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake[J]. Water Research, 2015, 74: 100-109.

[14] 徐好,桑国庆, 杨丽原, 等.近十年来南四湖水质时空变化特征研究[J].海洋湖沼通报,2019,7(2):47-52.

[15] 王洪伟, 王少明, 张敏, 等. 春季潘家口水库沉积物-水界面氮磷赋存特征及迁移通量[J]. 中国环境科学, 2021, 41(9): 4284-4293.

[16] 宋雅涓, 谢海燕, 张洁, 等. 东道海子表层沉积物氮营养盐及有机质分布及评价[J]. 新疆农业大学学报, 2016, 39(4): 324-331.

[17] DING S M, SUN Q, XU D. Development of the DET technique for high-resolution determination of soluble reactive phosphate profiles in sediment pore waters[J]. International Journal of Environmental Analytical Chemistry, 2010, 90(14–15): 1130-1138.

[18] WU Z H, JIANG X, WANG S H, et al. Mobilization and geochemistry of nutrients in sediment evaluated by diffusive gradients in thin films: significance for lake management[J]. Journal of Environmental Management 2021, 292: 112770.

[19] BEUTEL M W, LEONARD T M, DENT S R, et al. Effects of aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake[J]. Water Research, 2008, 42(8–9): 1953-1962.

[20] 谭晓波. 南四湖下级湖区及其主要河流沉积物磷污染特征与修复研究[D]. 济南: 山东建筑大学, 2011

[21] 潘婵娟. 三峡水库正常蓄水后沉积物磷形态特征研究[D]. 宜昌: 三峡大学, 2018 [2022-09-01]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.27270/d.cnki.gsxau.2018.000442&dbcode=CMFD

[22] 宋佳宇, 范俊欣, 刘思敏, 等. 再生水补给下塘-湿地系统表层土磷形态分布[J]. 环境科学与技术, 2014, 37(3): 140-145.

[23] YIN H B, CAI Y J, DUAN H T, et al. Use of DGT and conventional methods to predict sediment metal bioavailability to a field inhabitant freshwater snail (Bellamya aeruginosa) from Chinese eutrophic lakes[J]. Journal of Hazardous Materials, 2014, 264(15): 184-194.

[24] YUAN H, TAI Z, LI Q, et al. In-situ, high-resolution evidence from water-sediment interface for significant role of iron bound phosphorus in eutrophic lake[J]. Science of The Total Environment, 2020, 706(C): 136040.