2024年 01期

TiO2纳米颗粒形貌对热管工作性能的影响

Effect of TiO2 Nanoparticle Morphology on Working Performance of Heat Pipe

摘要(Abstract):

为了研究介质形貌对热管工作过程的影响,利用水热法制备棒状、片状、菱状3种形貌的TiO2纳米颗粒,采用两步法制备3种形貌TiO2-水纳米流体,对热管内不同形貌工作介质的导热性能、热管工作过程的启动性能、等温性能和热阻进行试验研究,分析TiO2纳米颗粒形貌对热管工作性能的影响。结果表明:热管内片状TiO2-水纳米流体的导热系数大于菱状、棒状TiO2-水纳米流体和基液水的;当加热功率相同时,片状TiO2-水纳米流体热管启动温度最低,为(38.2±0.5)℃,并且相对于棒状、菱状TiO2-水纳米流体热管,片状TiO2-水纳米流体热管稳定工作时蒸发段与冷凝段的平均温度差减小2~3℃,总热阻减小4.4%~28.3%。

关键词(KeyWords): TiO2纳米颗粒;热管;工作介质;

基金项目(Foundation): 山东省自然科学基金项目(ZR2021ME193); 2021年山东省科技型中小企业创新能力提升工程项目(2022TSGC1332);

作者(Author): 牛艳芳,蒋丽丽,王冬至,杜润生,赵蔚琳

DOI: 10.13349/j.cnki.jdxbn.20231108.003

参考文献(References):

[1] CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[C]//1995 International Mechanical Engineering Congress and Exhibition, November 12-17, 1995, San Francisco, CA, USA. Washington, DC: USDOE, 1995: 99.

[2] DEVENDIRAN D K, AMIRTHAM V A. A review on preparation, characterization, properties and applications of nanofluids[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 21.

[3] KEBLINSKI P, PHILLPOT S R, CHOI S U S, et al. Mechanism of heat flow in suspensions of nano-sized particles[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 855.

[4] KOLE M, DEY T K. Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids[J]. Applied Thermal Engineering, 2013, 50(1): 763.

[5] WANG W Z, DUAN G B, LI J K. The preparation and thermal performance research of spherical Ag-H2O nanofluids & applied in heat pipe[J]. Applied Thermal Engineering. 2017, 116: 811.

[6] KUMARESAN G, VENKATACHALAPATHY S, ASIRVATHAM L G, et al. Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids[J]. International Communications in Heat and Mass Transfer, 2014, 57: 208.

[7] GHANBARPOUR M, NIKKAM N, KHODABANDEH R, et al. Thermal performance of screen mesh heat pipe with Al2O3 nanofluid[J]. Experimental Thermal and Fluid Science 2015, 66: 213.

[8] SHI J Y, ZHAO W L, LI J K, et al. Heat transfer performance of heat pipe radiator with SiO2/water nanofluids[J]. Heat Transfer-Asian Research, 2017, 46(7): 1053.

[9] NIU Y F, ZHAO W L, GONG Y Y. Experimental investigation of thermal performance of miniature heat pipe using SiO2-water nanofluids[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(4): 2932.

[10] SALEH R, PUTRA N, WIBOWO R E, et al. Titanium dioxide nanofluids for heat transfer applications[J]. Experimental Thermal and Fluid Science, 2014, 52:19.

[11] 金志浩, 董凯月, 战洪仁, 等. 氧化石墨烯重力热管传热性能研究[J]. 化学工程, 2022, 50(2): 43.

[12] 杨洪海, 张苗, 刘利伟, 等. 氧化石墨烯/水脉动热管传热强化及性能预测[J]. 化工进展, 2022, 41(4): 1725.

[13] KIM K M, BANG I C. Effects of graphene oxide nanofluids on heat pipe performance and capillary limits[J]. International Journal Thermal Science, 2016, 100: 346.

[14] 郭广亮, 刘振华. 碳纳米管悬浮液强化小型重力型热管换热特性[J]. 化工学报, 2007, 58(12): 3006.

[15] 史继媛, 刘宗明, 李金凯, 等. 导热油基TiO2纳米流体热物性研究[J]. 硅酸盐通报, 2016, 35(10): 3324.

[16] 陈谢磊. TiO2-氨水纳米流体动态稳定性、物性及对流换热特性研究[D]. 南京: 东南大学, 2016.

[17] ZHANG H, QING S, GUI Q H, et al. Effects of surface modification and surfactants on stability and thermophysical properties of TiO2/water nanofluids[J]. Journal of Molecular Liquids, 2022, 349: 118098.

[18] 辛帅. 不同形貌二氧化钛纳米流体的制备及其热物性能研究[D].济南: 济南大学, 2017.

[19] 庄骏, 张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社, 2000: 45-57.