[1] NAWRATH C. Unraveling the complex network of cuticular structure and function[J]. Current Opinion in Plant Biology, 2006, 9(3): 281.
[2] KUNST L, JETTER R, SAMUELS A L. Biosynthesis and transport of plant cuticular waxes[M]//Annual Plant Reviews Online, Annual Plant Reviews Book Series, Vol. 23: Biology of the Plant Cuticle, 2018:182-215.
[3] 董林洁,包曙光,曹高燚, 等. 植物表皮蜡质与抗旱响应[J]. 分子植物育种,2023,21(01):294.
[4] MAGRI N T C, SARTORI J A D S, JARA J L P, et al. Precipitation of nonsugars as a model of color reduction in sugarcane juice (Saccharum spp.) submitted to the hydrogen peroxide clarification of the crystal sugar process[J]. Journal of Food Processing and Preservation, 2019, 43(10): 1-11.
[5] JAVELLE M, VERNOUD V, DEPÈGE-FARGEIX N, et al. Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor outer cell layer 1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis[J]. Plant Physiology, 2010, 154(1): 278.
[6] DUSTY P. Biochemistry and molecular biology of wax production in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996, 47: 407.
[7] ZHANG J Y, BROECKLING C D, BLANCAFLOR E B, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa)[J]. The Plant Journal, 2005, 42(5): 694.
[8] PASCAL S, BERNARD A, DESLOUS P, et al. Arabidopsis CER1-LIKE1 functions in a cuticular very-long-chain alkane-forming complex[J]. Plant Physiology, 2019, 179(2): 416.
[9] 张左悦. 植物脂肪酸合成及其在基础抗性和生物固氮中的价值探究[J]. 现代园艺, 2020, 43(24): 211.
[10] BATSALE M, BAHAMMOU D, FOUILLEN L, et al. Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses[J]. Cells, 2021, 10(6):1286.
[11] KUNST L, SAMUELS L. Plant cuticles shine: advances in wax biosynthesis and export[J]. Current Opinion in Plant Biology, 2009, 12(6): 721.
[12] LI-BEISSON Y, SHORROSH B, BEISSON F, et al. Acyl-lipid metabolism[J]. The Arabidopsis Book, 2013,11: 1-56.
[13] LESSIRE R, BESSOULE J-J, CASSAGNE C. Involvement of a β-ketoacyl-CoA intermediate in acyl-CoA elongation by an acyl-CoA elongase purified from leek epidermal cells[J]. Biochimica et Biophysica Acta: Lipids and Lipids Metabolism, 1989, 1006(1): 39-40.
[14] MILLAR A A, KUNST L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme[J]. The Plant Journal, 1997, 12(1): 121-129.
[15] JAMES D W, Jr, LIM E, KELLER J, et al. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator[J]. The Plant Cell, 1995, 7(3): 313-314.
[16] JOUBÈS J, RAFFAELE S, BOURDENX B, et al. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling[J]. Plant Molecular Biology, 2008, 67(5): 547-564.
[17] TRENKAMP S, MARTIN W, TIETJEN K, et al. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(32): 11905.
[18] LEE S B, SUH M C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species[J]. Plant Cell Reports, 2015, 34(4) : 567.
[19] LIU S Z, DIETRICH C R, SCHNABLE P S. DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles[J]. Genetics, 2009, 183(4): 1221-1222.
[20] SMIRNOVA A, LEIDE J, RIEDERER M. Deficiency in a very-long-chain fatty acid β-ketoacyl-coenzyme a synthase of tomato impairs microgametogenesis and causes floral organ fusion[J]. Plant Physiology, 2013, 161(1): 196.
[21] JENKS M A, TUTTLE H A, EIGENBRO DE S D, et al. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis[J]. Plant Physiology, 1995, 108(1): 369-376.
[22] CHEN X B, GOODWIN S M, BOROFF V L, et al. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production[J]. The Plant Cell, 2003, 15(5): 1178-1179.
[23] KURATA T, KAWABATA-AWAI C, SAKURADANI E, et al. The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis[J]. The Plant Journal, 2003, 36(1): 55-64.
[24] ROWLAND O, LEE R, FRANKE R, et al. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1[J]. FEBS Letters, 2007, 581(18): 3541.
[25] AARTS M G, KEIJZER C J, STIEKEMA W J, et al. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility[J]. The Plant Cell, 1995, 7(12): 2117.
[26] BOURDENX B, BERNARD A, DOMERGUE F, et al. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses[J]. Plant Physiology, 2011,156(1): 29-33.
[27] ROWLAND O, ZHENG H Q, HEPWORTH S R, et al. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis[J]. Plant Physiology, 2006, 142(3): 866.
[28] LI F L, WU X M, LAM P, et al. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis[J]. Plant Physiology, 2008, 148(1): 97.
[29] SAMUELS L, KUNST L, JETTER R. Sealing plant surfaces: cuticular wax formation by epidermal cells[J]. Annual Review of Plant Biology, 2008, 59: 693-795.
[30] YEATS T H, ROSE J K C. The formation and function of plant cuticles[J]. Plant Physiology, 2013, 163(1): 11-12.
[31] XU X J, FENG J C, LYU S Y, et al. Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, Eutrema salsugineum, and their response to water deficiency and impact on cuticle permeability[J]. Physiologia Plantarum, 2014, 151(4): 446-456.
[32] XUE Y, XIAO S , Kim J, et al. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation[J]. Journal of Experimental Botany,2014,65(18): 5473.
[33] BIRD D, BEISSON F, BRIGHAM A, et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion[J]. The Plant Journal, 2007, 52(3): 490-491.
[34] PIGHIN J A, ZHENG H Q, BALAKSHIN L J, et al. Plant cuticular lipid export requires an ABC transporter[J]. Science, 2004, 306(5696): 702.
[35] ZHANG J H. China's success in increasing per capita food production[J]. Journal of Experimental Botany, 2011, 62(11): 3710.
[36] BARRIOS-MASIAS F H, KNIPFER T, MCELRONE A J. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization[J]. Journal of Experimental Botany, 2015, 66(19): 6069-6074.
[37] PORNSIRIWONG W, ESTAVILLO G M, CHAN K X, et al. A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination[J]. eLife, 2017, 6: 1-21.
[38] FAROOQ M, WAHID A, KOBAYASHI N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29(1): 185.
[39] SHEPHERD T, GRIFFITHS D W. The effects of stress on plant cuticular waxes[J]. The New Phytologist, 2006, 171(3): 470.
[40] LIU X W, FEAKINS S J, DONG X J, et al. Experimental study of leaf wax n -alkane response in winter wheat cultivars to drought conditions[J]. Organic Geochemistry, 2017, 113: 210-220.
[41] CAMERON K D, TEECE M A, SMART L B, et al. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco[J]. Plant Physiology, 2006, 140(1): 178.
[42] YANG J, ORDIZ M I, JAWORSKI J G, et al. Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata[J]. Plant Physiology and Biochemistry, 2011, 49(12): 1451-1452.
[43] LEE S B, SUH M C. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis[J]. Plant & Cell Physiology,2015,56(1): 51-55.
[44] ROCCA N L, MANZOTTI P S, CAVAIUOLO M, et al. The maize fused leaves1 (fdl1) gene controls organ separation in the embryo and seedling Shoot and promotes coleoptile opening[J]. Journal of Experimental Botany, 2015, 66(19): 5759-5760.
[45] ROZEMA J, VAN DE STAAIJ J, BJÖRN L O, et al. UV-B as an environmental factor in plant life: stress and regulation[J]. Trends in Ecology & Evolution, 1997, 12(1): 22.
[46] PFÜNDEL E E, AGATI G, CEROVIC Z G. Optical properties of plant surfaces[M]// Annual Plant Reviews Online, Annual Plant Reviews Book Series, Vol. 23: Biology of the Plant Cuticle, 2007, 23: 216-238.
[47] KARABOURNIOTIS G, PAPADOPOULOS K, PAPAMARKOU M, et al. Ultraviolet-B radiation absorbing capacity of leaf hairs[J]. Physiologia Plantarum, 1992, 86(3): 414-417.
[48] LONG L M, PATEL H P, CORY W C, et al. The maize epicuticular wax layer provides UV protection[J]. Functional Plant Biology, 2003, 30(1): 75-76.
[49] STEINMÜLLER D, TEVINI M. Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants[J]. Planta, 1985, 164(4): 559-560.
[50] ROBBERECHT R, CALDWELL M M, BILLINGS W D. Leaf ultraviolet optical properties along a latitudinal gradient in the Arctic-Alpine Life Zone[J]. Ecology, 1980, 61(3) : 616-617.
[51] ZHOU J M, ZHANG Y L. Plant immunity: danger perception and signaling[J]. Cell, 2020, 181(5) : 978.
[52] 李婧婧, 黄俊华, 谢树成. 植物蜡质及其与环境的关系[J]. 生态学报, 2011, 31(2): 570-571.
[53] KOLATTUKUDY P E, ROGERS L M, LI D, et al. Surface signaling in pathogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4080-4081.
[54] SKAMNIOTI P, GURR S J. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence[J]. The Plant Cell, 2007, 19(8): 2674-2685.
[55] ZHANG Y L, ZHANG C L, WANG G L, et al. The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis[J]. BMC Plant Biology, 2019, 19(1) : 362.