2024年 01期

基于改进经验模态分解的直流串联电弧故障检测

Direct Current Series Arc Fault Detection Based on Improved Empirical Mode Decomposition

摘要(Abstract):

针对直流系统中存在强噪声干扰时串联电弧故障检测准确度较低的问题,提出一种基于改进自适应噪声完备集合经验模态分解和模糊k均值聚类相结合的直流串联电弧故障检测方法;首先运用改进自适应噪声完备集合经验模态分解方法分解回路电流信号,得到多个本征模态函数;然后计算各本征模态函数的Hurst指数值以区分噪声分量和有用分量,将Hurst指数值大于0.5的有用分量进行重构;最后计算重构信号的峰峰值特征量和模糊熵特征量以构建特征向量作为模糊k均值聚类的输入,通过聚类中心的不同位置识别正常与故障状态。仿真与试验结果表明,所提出的方法区分系统正常与故障状态准确度为100%,区分系统干扰与故障状态准确度为93%,能有效识别直流串联电弧故障。

关键词(KeyWords):串联电弧;故障检测;经验模态分解;Hurst指数;模糊k均值聚类;

基金项目(Foundation): 国家自然科学基金项目(52077116);

作者(Author): 吴泳恩,王宾

DOI: 10.13349/j.cnki.jdxbn.20221125.001

参考文献(References):

[1] 李景丽, 时永凯, 张琳娟, 等. 考虑电动汽车有序充电的光储充电站储能容量优化策略[J]. 电力系统保护与控制, 2021, 49(7): 94-102.

[2] 张勤进, 张博, 刘彦呈, 等. 基于低频电流注入的船舶直流微电网线路阻抗检测[J]. 电力系统保护与控制, 2020, 48(8): 134-140.

[3] CHEN J W, WANG C J, CHEN J. Investigation on the selection of electric power system architecture for future more electric aircraft[J].IEEE Transactions on Transportation Electrification, 2018, 4(2): 563-576.

[4] 刘源, 汲胜昌, 祝令瑜, 等. 直流电源系统中直流电弧特性及其检测方法研究[J]. 高压电器, 2015, 51(2): 24-29.

[5] 祝令瑜, 由志勋, 刘源, 等. 低压串联直流电弧检测方法的研究现状及发展[J]. 绝缘材料, 2015, 48(5): 1-5.

[6] GEORGIJEVIC N L, JANKOVICM V, SRDIC S, et al. The detection of series arc fault in photovoltaic systems based on the arc current entropy[J].IEEE Transactions on Power Electronics, 2015, 31(8): 5917-5930.

[7] 王尧, 李阳, 葛磊蛟, 等. 基于滑动离散傅里叶变换的串联直流电弧故障识别[J]. 电工技术学报, 2017, 32(19): 118-124.

[8] XIA K, LIU B Z, FU X L, et al. Wavelet entropy analysis and machine learning classification model of DC serial arc fault in electric vehicle power system[J]. IET Power Electronics, 2019, 12(15): 3998-4004.

[9] 吴春华, 徐文新, 李智华, 等. 光伏系统直流电弧故障检测方法及其抗干扰研究[J]. 中国电机工程学报, 2018, 38(12): 3546-3555,14.

[10] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J].Biomedical Signal Processing and Control, 2014, 14: 19-29.

[11] 顾云青, 苏玉香, 沈晓群, 等. 基于改进的CEEMDAN排列熵和GWO-SVM的滚动轴承故障诊断[J]. 组合机床与自动化加工技术, 2022(8): 62-66.

[12] MESYATS G A. Ecton mechanism of the cathode spot phenomena in a vacuum arc[J] IEEE Transactions on Plasma Science, 2013, 41(4): 676-694.

[13] WENDL M, WEISS M, BERGER F. HF characterization of low current DC arcs at alterable conditions[C]// International Conference on Electrical Contacts, June 22-26, 2014, Dresden, Germany. New York: IEEE, 2014: 1-6

[14] MIAO W C, WANG Z F, WANG F, et al. Multi-characteristics arc model and autocorrelation-algorithm based arc fault detector for DC microgrid[J/OL].IEEE Transactions on Industrial Electronics, 2022, 1-11(2022-06-01)[2022-10-05]. DOI: 10.1109/TIE.2022.3186351.

[15] 龚云, 信杰, 南守琎. 一种引入Hurst指数的MEMS陀螺仪去噪模型[J]. 大地测量与地球动力学, 2022, 42(5): 457-461.

[16] ZHANG Z J, XIE H, TONG X H, et al. Denoising for satellite laser altimetry full-waveform data based on EMD-Hurst analysis[J].International Journal of Digital Earth, 2020, 13(11): 1212-1229.

[17] 潘雅婧, 王仰麟, 彭建, 等. 基于小波与R/S方法的汉江中下游流域降水量时间序列分析[J]. 地理研究, 2012, 31(5): 811-820.

[18] 郑近德, 陈敏均, 程军圣, 等. 多尺度模糊熵及其在滚动轴承故障诊断中的应用[J]. 振动工程学报, 2014, 27(1): 145-151.

[19] 吴春华, 俞薛颖, 李智华, 等. 基于FCM与高斯隶属度的光伏组件健康状态诊断[J]. 电网技术, 2022, 46(5): 1887-1896.

[20] WANG F, WANG Z F, MIAO W C. Characteristic study and non-invasive detection of DC arc-fault in microgrid[C]// International Conference on Power and Renewable Energy, September 17-20, 2021, Shanghai, China. New York: IEEE, 2021: 1-6