2024年 02期

基于P2PSand模型的水库土石坝坝基地震液化影响分析

Effect Analysis of Seismic Liquefaction on Reservoir Earth-Rockfill Dam Foundations Based on Practical Two-surface Plastic Sand Model


摘要(Abstract):

为了解决水库土石坝坝基地震液化导致严重坝体变形和边坡失稳等灾害,从而对水库土石坝长效安全运行造成严重威胁的问题,以某水库土石坝为例,利用有限差分软件FLAC3D 7.0及其内置P2PSand模型(practical two-surface plastic sand model),对存在地震液化地基的水库土石坝进行地震动力响应分析。结果表明:地震强度与相对密实度对水库土石坝坝基地震液化趋势影响较大,超孔压比随着地震过程的进行而逐渐增大,增大幅度约为10.46%;随着坝基地震液化程度的提高,坝体变形更明显,并且坝基边坡稳定性劣化。

关键词(KeyWords):水库土石坝;地震液化;P2PSand模型;边坡稳定性

基金项目(Foundation): 国家自然科学基金项目(51708251,51979122);; 山东省自然科学基金项目(ZR2023ME070);; 中国博士后科学基金项目(2019M652304)

作者(Author): 牛金帝,张西文,吕颖慧,邱宇,扈萍

DOI: 10.13349/j.cnki.jdxbn.20231212.002

参考文献(References):

[1] 邓益兵,周健,刘文白,等.水库围堤地基液化有效应力动力分析[J].岩土力学,2010,31(增刊2):292.

[2] 张以文,张西文,王振,等.液化场地水库土石坝地震动力响应研究[J].华北地震科学,2021,39(3):19.

[3] WANG Z L,MAKDISI F I,EGAN J.Practical applications of a nonlinear approach to analysis of earthquake-induced liquefaction and deformation of earth structures[J].Soil Dynamics and Earthquake Engineering,2006,26(2/3/4):231.

[4] 周江平.土石坝抗滑稳定性与砂层地基液化的可靠度理论与应用[D].成都:西南交通大学,2004.

[5] 胡南雄,任旭华,张继勋.平原水库土石坝饱和砂土地基地震液化分析[J].三峡大学学报(自然科学版),2018,40(4):28.

[6] SHARPA M K,ADALIER K.Seismic response of earth dam with varying depth of liquefiable foundation layer[J].Soil Dynamics and Earthquake Engineering,2006,26(11):1028.

[7] 夏志凡,叶冠林,王建华,等.不同库区水位下坝基地震液化的有效应力分析[J].上海交通大学学报,2009,43(2):173.

[8] ZHANG F,YE B,NODA T,et al.Explanation of cyclic mobility of soils:approach by stress-induced anisotropy[J].Soils and Foundations,2007,47(4):635.

[9] 王根龙,林玮,蔡晓光.基于Finn本构模型的饱和砂土地震液化分析[J].地震工程与工程振动,2010,30(3):178.

[10] ANDRUS R D,STOKOE K H Ⅱ.Liquefaction resistance of soils from shear-wave velocity[J].Journal of Geotechnical and Geo-environmental Engineering,2000,126(11):1015.

[11] BOLTON M D.The strength and dilatancy of sands[J].Géotechnique,1986,36(1):65.

[12] PRéVOST J H.Mathematical modeling of monotonic and cyclic undrained clay behavior[J].International Journal for Numerical Analytical Methods in Geomechanics,1977,1(2):195.

[13] KAYEN R,MOSS R E S,THOMPSON E M,et al.Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential[J].Geotechnical and Geoenviron-mental Engineering,2013,139(3):407.

[14] EI-SEKELLY W,DOBRY R,ABDOUN T,et al.Evaluation of field sand liquefaction including partial drainage under low and high overburden using a generalized bounding surface model[J].Soil Dynamics and Earthquake Engineering,2022,152:107059.

[15] SCOTT R F.Solidification and consolidation of a liquefied sand column[J].Soils and Foundations,1986,26(4):23.

[16] YOUD T L,IDRISS I M,ANDRUS R D,et al.Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resis-tance of soils[J].Journal of Geotechnical and Geoenvironmental Engineering,2001,127(10):817.

[17] ZHAO C,CHRISTINE D.Formulation,validation and application of a practice-oriented two-surface plasticity sand model[J].Computers and Geotechnics,2021,132:103984-3-103984-4.

[18] ZHAO C.A practical 3D bounding surface plastic sand model for geotechnical earthquake engineering application[J].Geotech-nical Earthquake Engineering and Soil Dynamics,2018:41.

[19] DAFALIAS Y F,MANZARI M T.Simple plasticity sand model accounting for fabric change effects[J].Journal of Engineering Mechanics,2004,130(6):622.

[20] MANZARI M T,DAFALIAS Y F.A critical state two-surface plasticity model for sands[J].Géotechnique,1997,47(2):255.

[21] VAN EEKELEN H A M.Isotropic yield surfaces in three dimensions for use in soil mechanics[J].International Journal for Numerical Analytical Methods in Geomechanics,1980,4(1):90-93.