2024年 02期

网络药理学与分子对接研究黄芪治疗阿尔兹海默病的作用机制

Mechanism of Astragalus propinquus S. Against Alzheimer’s Disease Based on Network Pharmacology and Molecular Docking


摘要(Abstract):

为了研究黄芪中活性成分治疗阿尔兹海默病的作用机制,采用网络药理学与分子对接模拟方法,利用相关数据库确定疾病靶点,构建靶点相互作用和药物-成分-靶蛋白-疾病网络,在DAVID数据库进行基因本体富集分析和京都基因与基因组百科全书数据库通路富集分析,并对靶点进行分子对接模拟验证。结果表明:筛选到20种黄芪抗阿尔兹海默病的活性成分,其中槲皮素、山奈酚、异鼠李素、刺芒柄花素、 7-O-甲基-异微凸剑叶莎醇为关键成分;筛选出118个交集靶点,含6个关键靶点,各靶点富集于炎症反应细胞凋亡等生物过程;分析得到180条信号通路,作用机制主要与TNF、 PI3K-Akt、 IL-17等通路相关。

关键词(KeyWords):网络药理学;分子对接;黄芪;阿尔兹海默病;作用机制

基金项目(Foundation): 国家自然科学基金山东省联合基金重点项目(U1806222)

作者(Author): 武文倩,张文涛,袁萧萧,吴之军,王亚涛,李玉梅

DOI: 10.13349/j.cnki.jdxbn.20240015.001

参考文献(References):

[1] 王英全,梁景宏,贾瑞霞,等.2020—2050年中国阿尔茨海默病患病情况预测研究[J].阿尔茨海默病及相关病,2019,2(1):289.

[2] 占继贤,叶树,王艳,等.阿尔茨海默病发病机制研究进展[J].世界最新医学信息文摘,2017,17(26):27.

[3] 彭英,李萍萍,李琳,等.抗阿尔茨海默病药物临床研究进展[J].药学学报,2016,51(8):1185.

[4] 姜莉,王成,邢颖,等.不同提取方法对黄芪提取液活性成分及抗氧化性的影响[J].食品研究与开发,2022,43(16):119.

[5] 李玥,安红梅.补肾中药及其复方防治阿尔茨海默病用药规律及其配伍特点的文献研究[J].现代临床医学,2021,47(1):53.

[6] 陈健,陈启龙.网络药理学在中医药研究中的现状及思考[J].上海中医药大学学报,2021,35(5):1.

[7] 周艳,柴艺汇,秦忠,等.中医药防治阿尔茨海默病的研究进展[J].贵州中医药大学学报,2020,42(2):74.

[8] 赵雨薇,甄艳杰,戴月英,等.槲皮素对阿尔茨海默症神经保护作用研究[J].神经药理学报,2020,10(5):55.

[9] NEJABATI H R,ROSHANGAR L.Kaempferol as a potential neuroprotector in Alzheimer’s disease[J].Journal of Food Biochemistry,2022,46(12):e14375.

[10] ZHANG N,XU H D,WANG Y Y,et al.Protective mechanism of kaempferol against Aβ25-35-mediated apopt nosis of pheochromocytoma (PC-12) cells through the ER/ERK/MAPK signalling pathway[J].Archives of Medical Science,2020,17(2):406.

[11] WEI P C,LEE-CHEN G J,CHEN C M,et al.Isorhamnetin attenuated the release of interleukin-6 from β-amyloid-activated microglia and mitigated interleukin-6-mediated neurotoxicity[J].Oxidative Medicine and Cellular Longevity,2022,2022:3652402.

[12] FEI H X,ZHANG Y B,LIU T,et al.Neuroprotective effect of formononetin in ameliorating learning and memory impairment in mouse model of Alzheimer’s disease[J].Bioscience Biotechnology and Biochemistry,2018,82(1):57.

[13] CHEN L Z,OU S S,ZHOU L Q,et al.Formononetin attenuates Aβ25-35-induced cytotoxicity in HT22 cells via PI3K/Akt signaling and non-amyloidogenic cleavage of APP[J].Neuroscience Letters,2017,639:36.

[14] 代文博,曾亮.PI3K/Akt信号通路与阿尔茨海默病关系的研究进展[J].现代医药卫生,2014,30(10):1499.

[15] LIU S Y,ZHAO H D,WANG J L,et al.Association between polymorphisms of the AKT1 gene promoter and risk of the Alzheimer’s disease in a Chinese Han population with type 2 diabetes[J].CNS Neuroscience and Therapeutics,2015,21(8):619.

[16] JAYARAMAN A,HTIKE T T,JAMES R,et al.TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer’s disease hippocampus[J].Acta Neuropathologic Communications,2021,9(1):159.

[17] KAUR D,SHARMA V,DESHMUKH R.Activation of microglia and astrocytes:a roadway to neuroinflammation and Alzheimer’s disease[J].Inflammopharmacology,2019,27(4):663.

[18] ALI M,BRACKO O.VEGF paradoxically reduces cerebral blood flow in Alzheimer’s disease mice[J].Neuroscience Insights,2022,17:26331055221109254.

[19] 张卓,时晶,魏明清,等.基于网络药理学及分子对接探讨熟地黄-山茱萸药对治疗阿尔茨海默病的潜在机制[J].湖南中医药大学学报,2022,42(7):1139.

[20] 张薇,刘会,张亚岚,等.炎症在阿尔茨海默病中作用机制的研究进展[J].生命科学研究,2021,25(2):144.

[21] 董贤慧,柴锡庆.阿尔茨海默病发病机制研究进展[J].中国老年学杂志,2014,34(20):5906.

[22] DECOURT B,LAHIRI D K,SABBAGH M N.Targeting tumor necrosis factor alpha for Alzheimer’s disease[J].Current Alzheimer Research,2017,14(4):412.

[23] MILOVANOVIC J,ARSENIJEVIC A,STOJANOVIC B,et al.Interleukin-17 in chronic inflammatory neurological diseases[J].Frontiers in Immunology,2020,11:947.