2024年 02期

纳米颗粒间相互作用对油-水界面张力的影响机制

Effect Mechanism of Nanoparticle Interactions on Oil-Water Interfacial Tension


摘要(Abstract):

为了研究油-水界面上纳米颗粒的动态吸附过程及其对界面张力的影响,采用耗散粒子动力学模拟方法,建立纳米颗粒在油-水界面物理模型,研究单颗粒的吸附动力学过程及多颗粒相互作用对界面张力的影响机制。结果表明:单颗粒在油-水界面的吸附分为自由扩散、界面吸附、动态平衡3个阶段;单颗粒吸附过程自由能变化远大于颗粒的动能,颗粒吸附可自发、快速进行,且吸附后能稳定在界面上;多颗粒间的相互作用力随颗粒间距离的增大而振荡衰减,这是由颗粒间的溶剂粒子所产生的溶剂化效应所致;当颗粒间相互作用为引力时,界面张力增大,当颗粒间相互作用为斥力时,界面张力减小。

关键词(KeyWords):油-水界面;纳米颗粒;界面张力;吸附;自由能

基金项目(Foundation): 国家自然科学基金广东省联合基金项目(U20A20299)

作者(Author): 练燕菲,李玉秀,陈颖,郑佳杰,郑丹菁

DOI: 10.13349/j.cnki.jdxbn.20240009.001

参考文献(References):

[1] 王子琛,佘跃惠,翁雪.纳米材料提高原油采收率的机理研究综述[J].当代化工,2018,47(12):2612.

[2] ZHOU S B,FAN J,DATTA S S,et al.Thermally switched release from nanoparticle colloidosomes[J].Advanced Functional Materials,2013,23(47):5925.

[3] GRZELCZAK M,VERMANT J,FURST E M,et al.Directed self-assembly of nanoparticles[J].ACS Nano,2010,4(7):3591.

[4] ZHU Y,JIANG J Z,LIU K H,et al.Switchable pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant[J].Langmuir,2015,31(11):3301.

[5] REZVANI H,KHALILNEZHAD A,GANJI P,et al.How ZrO2 nanoparticles improve the oil recovery by affecting the interfacial phenomena in the reservoir conditions?[J].Journal of Molecular Liquids,2018,252:158.

[6] ZHANG H T,ZHOU M,GUO Z Y,et al.Effect of hydrophobicity on the interfacial rheological behaviors of nanoparticles at decane-water interface[J].Journal of Molecular Liquids,2019,294:111618.

[7] ZHOU H D,DAI C L,ZHANG Q S,et al.Interfacial rheology of novel functional silica nanoparticles adsorbed layers at water-oil interface and correlation with Pickering emulsion stability[J].Journal of Molecular Liquids,2019,293:111500.

[8] SOFIA S J D,JAMES L A,ZHANG Y H.Understanding the behavior of H+-protected silica nanoparticles at the oil-water interface for enhanced oil recovery(EOR) applications[J].Journal of Molecular Liquids,2019,274:98-114.

[9] DONG L C,JOHNSON D.Surface tension of charge-stabilized colloidal suspensions at the water-air interface[J].Langmuir,2003,19(24):10205.

[10] YANG D H,SUN H Y,CHANG Q,et al.Study on the effect of nanoparticle used in nano-fluid flooding on droplet-interface electro-coalescence[J].Nanomaterials(Basel),2021,11(7):1764.

[11] MOGHADAM T F,AZIZIAN S.Effect of ZnO nanoparticle and hexadecyltrimethylammonium bromide on the dynamic and equilibrium oil-water interfacial tension[J].Journal of Physical Chemistry B,2014,118(6):1527.

[12] LUU X C,YU J,STRIOLO A.Nanoparticles adsorbed at the water-oil interface:coverage and composition effects on structure and diffusion[J].Langmuir,2013,29(24):7221.

[13] 李红霞,强洪夫.耗散粒子动力学模拟方法的发展和应用[J].力学进展,2009,39(2):165-175.

[14] GROOT R D,WARREN P B.Dissipative particle dynamics:bridging the gap between atomistic and mesoscopic simulation[J].Journal of Chemical Physics,1997,107:4423-4435.

[15] FAN H,STRIOLO A.Nanoparticle effects on the water-oil interfacial tension[J].Physical Review E,2012,86(5):051610.

[16] ZEPPIERI S,RODRíGUEZ J,DE RAMOS A L L.Interfacial tension of alkane-water systems[J].Journal of Chemical & Engineering Data,2001,46(5):1086-1088.

[17] SINGH H,SHARMA S.Free energy profiles of adsorption of surfactant micelles at metal-water interfaces[J].Molecular Simulation,2021,47 (5):420-427.

[18] WEN B Y,SUN C Z,BAI B F,et al.Ionic hydration-induced evolution of decane-water interfacial tension[J].Physical Chemistry Chemical Physics,2017,19(22):14606-14614.

[19] ZHAO L L,LIN S C,MENDENHALL J D,et al.Molecular dynamics investigation of the various atomic force contributions to the interfacial tension at the supercritical CO2-water interface[J].Journal of Physical Chemistry B,2011,115 (19):6076-6087.

[20] YONG X,QIN S Y,SINGLER T J.Nanoparticle-mediated evaporation at liquid-vapor interfaces[J].Extreme Mechanics Letters,2016,7:90-103.

[21] SUN J Z,STIRNER T.Molecular dynamics simulation of the surface pressure of colloidal monolayers[J].Langmuir,2001,17(10):3103-3108.