2024年 02期

面向溺水救援机器人平稳跟踪的模糊比例微分控制视觉伺服方案

Fuzzy Proportional Plus Derivative Control Visual Servo Scheme for Stationary Tracking of Drowning Rescue Robots


摘要(Abstract):

针对溺水救援机器人的平稳跟踪需求,提出一种基于模糊比例微分控制的视觉伺服方案,通过场馆顶部安装的俯视摄像头获取机器人的坐标位置,使用虚拟导航线设计动态行走路径,计算偏移方向、偏移角并制定转弯规则;利用三角隶属度函数制定模糊比例、微分控制规则表,根据2种规则表中的比例、微分系数分别控制机器人的偏移角、距离偏移量及其变化率,实现机器人的跟踪与避障的平稳性调整;机器人采用核相关滤波跟踪算法对溺水人员进行跟踪,在溺水人员位置变化时调整运动方向,依靠实时、稳定的声呐信息设置偏移角,实现避障功能;对所提出的方案在先锋P3DX型机器人上进行实验验证。结果表明:机器人能及时应对目标变化,没有跟错、跟丢现象;在不同工况时的横滚角均小于1°,避障率达到100%,能够快速、稳定、准确地到达目标位置,达到溺水救援机器人的前期应用要求。

关键词(KeyWords): 溺水救援机器人;平稳跟踪;模糊比例微分控制;视觉伺服

基金项目(Foundation): 山东省重点研发计划项目(2017CXGC0810);; 山东省教育科学“十三五”规划教育招生考试专项课题项目(BYZK201917)

作者(Author): 郭英,厉广伟,刘宗尚,MOUNZEO Breit Hilley,李金屏

DOI: 10.13349/j.cnki.jdxbn.20231222.001

参考文献(References):

[1] NING M,MA Z F,CHEN H L,et al.Design and analysis for a multifunctional rescue robot with four-bar wheel-legged structure[J].Advances in Mechanical Engineering,2018,10(2):1.

[2] LI F H,HOU S K,BU C G,et al.Rescue robots for the urban earthquake environment[J].Disaster Medicine and Public Health Preparedness,2022,17:e181.

[3] 孟凯宁,舒畇溦,杜成群.基于废墟结构特征的灾后救援机器人设计研究[J].包装工程艺术版,2022,43(24):180.

[4] SAPATY P S.Military robotics:latest trends and spatial grasp solutions[J].International Journal of Advanced Research in Artificial Intelligence,2015,4(4):9.

[5] SPR?WITZ A,TULEU A,VESPIGNANI M,et al.Towards dynamic trot gait locomotion:design,control,and experiments with Cheetah-cub,a compliant quadruped robot[J].The International Journal of Robotics Research,2013,32(8):932.

[6] MATTUCCI F,OLIVEIRA R,BIZZARRI L,et al.Genetic structure of wildcat (Felis silvestris) populations in Italy[J].Ecology and Evolution,2013,3(8):2443.

[7] MILO P.Bear to the rescue[J].Evaluation Engineering,2011,50(1):6.

[8] 杜惠.六足机器人容错性能及容错运动规划[D].上海:上海交通大学,2016.

[9] 宋朋.轮腿式六足机器人机构设计与分析[D].秦皇岛:燕山大学,2021.

[10] WEINSTEIN D H.Modified Ritz method[J].Proceedings of the National Academy of Sciences,1934,20(9):529.

[11] BEARD R W,McLAIN T W,GOODRICH M A,et al.Coordinated target assignment and intercept for unmanned air vehicles[J].IEEE Transactions on Robotics and Automation,2002,18(6):911.

[12] SáNCHEZ G,LATOMBE J C.On delaying collision checking in PRM planning:application to multi-robot coordination[J].International Journal of Robotics Research,2002,21(1):5.

[13] MO H W,XU L F.Research of biogeography particle swarm optimization for robot path planning[J].Neurocomputing,2015,148:91.

[14] ROBERGE V,TARBOUCHI M,LABONTE G.Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J].IEEE Transactions on Industrial Informatics,2013,9(1):132.

[15] 刘杰,闫清东,马越,等.基于蚁群几何优化算法的全局路径规划[J].东北大学学报(自然科学版),2015,36(7):923.

[16] 宋晓琳,周南,黄正瑜,等.改进RRT在汽车避障局部路径规划中的应用[J].湖南大学学报(自然科学版),2017,44(4):30.

[17] LIN D,SHEN B,LIU Y R,et al.Genetic algorithm-based compliant robot path planning:an improved Bi-RRT-based initialization method[J].Assembly Automation,2017,37(3):261.

[18] 彭帆,谢永芳,陈晓方,等.基于障碍物可达区域预测的机器人实时避障算法[J].东北大学学报(自然科学版),2022,43(9):1225.

[19] 梁臻,房体育,李金屏.基于虚拟导航线的农业机器人精确视觉导航方法[J].计算机应用,2021,41(1):191.

[20] SUGENO M.An introductory survey of fuzzy control[J].Information Sciences,1985,36(1/2):62.

[21] HOODA D S,MISHRA A.On trigonometric fuzzy information measures[J].ARPN Journal of Science and Technology,2015,5(3):148.