2024年 03期

Karst Collapse Characteristics and Evolution Mechanism of the Sunzu River Rubber Dam

摘要(Abstract):

针对水环境中全氟和多氟化合物污染日益严峻且难以去除的现状,对水环境中全氟和多氟化合物的赋存特征与去除技术进行综述,包括全氟和多氟化合物在水环境中的污染现状、环境行为、生态风险及污染物去除技术等,总结吸附法、超声降解法、光化学法、电化学氧化法、微生物降解法等去除水环境中全氟和多氟化合物的优缺点,指出未来研究重点是结合全氟和多氟化合物的环境行为特点将去除技术进行联合应用。

关键词(KeyWords): 全氟和多氟化合物;赋存特征;去除技术;水环境;污染特性

基金项目(Foundation): 国家重点研发计划项目(2021YFC3200805-2);;国家自然科学基金项目(52270005);;山东省自然科学基金项目(ZR2021ME166)

作者(Author): 高珂,辛晓东,许伟颖,刘红,逯南南,贾瑞宝

DOI: 10.13349/j.cnki.jdxbn.20240320.001

参考文献(References):

[1] 张春晖, 刘育, 唐佳伟, 等. 典型工业废水中全氟化合物处理技术研究进展[J]. 中国环境科学, 2021, 41(3): 1109.

[2] 仇付国, 刘玉君, 刘子奇, 等. 水中全/ 多氟化合物污染现状及控制技术研究进展[J]. 环境科学与技术, 2020, 43(10):229.

[3] LIN H K, FENG Y X, ZHENG Y Y, et al. Transcriptomic analy-sis reveals the hepatotoxicity of perfluorooctanoic acid in blackspotted frogs (Rana nigromaculata)[J]. Diversity-Basel, 2022, 14(11): 971.

[4] TORRES F B M, GUIDA Y, WEBER R, et al. Brazilian overview of per- and polyfluoroalkyl substances listed as persistent organic pollutants in the Stockholm convention[J]. Chemosphere, 2021, 291(P3): 132674.

[5] WASHINGTON J W, RANKIN K, LIBELO E L, et al. Determining global background soil PFAS loads and the fluorotelomer-based polymer degradation rates that can account for these loads [J]. Science of the Total Environment, 2018, 651(Pt 2): 2444.

[6] PFOTENHAUER D, SELLERS E, OLSON M, et al. PFAS concentrations and deposition in precipitation: an intensive 5-month study at National Atmospheric Deposition Program-National trends sites ( NADP-NTN) across Wisconsin, USA [ J]. Atmospheric Environment, 2022, 291: 119368.

[7] 龚香宜, 祁士华, 吕春玲, 等. 洪湖沉积物中有机氯农药的释放动力学模拟[J]. 环境科学研究, 2010, 23(11): 1351.

[8] ZHANG G Z, PAN Z K, LI J, et al. Bioaccumulation and ecological risk of perfluorinated compounds in aquatic plants of Nansi Lake, China[J]. Soil & Sediment Contamination, 2021, 30(4): 409.

[9] DONG H K, LU G H, YAN Z H, et al. Distribution, sources and human risk of perfluoroalkyl acids (PFAAs) in a receiving riverine environment of the Nanjing urban area, East China[J]. Journal of Hazardous Materials, 2020, 381(C): 120911.

[10] 金梦, 刘丽君, 赵波, 等. 长三角地区水体中全氟化合物的污染特征及风险评价[J]. 环境化学, 2023, 42(07): 2153.

[11] WU J, JUNAID M, WANG Z F, et al. Spatiotemporal distribution, sources and ecological risks of perfluorinated compounds (PFCs) in the guanlan river from the rapidly urbanizing areas of Shenzhen, China[J]. Chemosphere, 2020, 245(C): 125637.

[12] 陈典, 张照荷, 赵微, 等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试, 2022, 41(3): 499.

[13] NAVARRO I, TORRE A D L, SANZ P, et al. Perfluoroalkyl acids (PFAAs): distribution, trends and aquatic ecological risk assessment in surface water from Tagus River Basin (Spain)[J]. Environmental Pollution, 2020, 256(C): 113511.

[14] HONGKACHOK C, BOOTANON S K, BOONTANON N, et al. Levels of perfluorinated compounds (PFCs) in groundwater around improper municipal and industrial waste disposal sites in Thailand and health risk assessment [J]. Water Science and Technology, 2018, 2017(2): 457.

[15] WANG Q, SONG X, WEI C L, et al. Distribution, source identification and health risk assessment of PFASs in groundwater from Jiangxi Province, China [ J]. Chemosphere, 2021, 291 (P2): 132946.

[16] GUO R, LIU X L, LIU J, et al. Occurrence, partition and environmental risk assessment of per- and polyfluoroalkyl substances in water and sediment from the Baiyangdian Lake, China [J]. Scientific Reports, 2020, 10(1): 4691.

[17] 曾士宜, 杨鸿波, 彭洁, 等. 贵州草海湖泊表层水与沉积物中全氟化合物的污染特征及风险评估[J]. 环境化学, 2021, 40(4): 1193.

[18] LI L, ZHAI Z H, LIU J G, et al. Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012[J]. Chemosphere, 2015, 129: 100.

[19] ZHI Y, LIU J X. Column chromatography approach to determine mobility of fluorotelomer sulfonates and polyfluoroalkyl betaines[J]. Science of the Total Environment, 2019, 683: 480.

[20] NGUYEN T M H, BRÄUNING J, KOOKANA R S, et al. Assessment of mobilization potential of per- and polyfluoroalkyl substances for soil remediation [ J]. Environmental Science & Technology, 2022, 56: 10030.

[21] 陈雷, 戴玙芽, 陈晓婷, 等. 全氟及多氟化合物在土壤中的污染现状及环境行为研究进展[J]. 农业环境科学学报, 2021, 40(8): 1611.

[22] NICKERSON A, MAIZEL A C, SCHAEFER C E, et al. Effect of geochemical conditions on PFAs release from AFFF-impacted saturated soil columns [J]. Environmental Science: Process & Impacts, 2023, 25(3): 405.

[23] GUO X T, TU B, GE J H, et al. Sorption of tylosin and sulfamethazine on solid humic acid[J]. Journal of Environmental Sciences, 2016, 43: 208.

[24] MILINOVIC J, LACORTE S, VIDAL M, et al. Sorption behaviour of perfluoroalkyl substances in soils [J]. Science of the Total Environment, 2015, 511: 63.

[25] UWAYEZU J N, YEUNG L W Y, BÄCKSTRÖM M. Sorption of PFOS isomers on goethite as a function of pH, dissolved organic matter (humic and fulvic acid) and sulfate[ J]. Chemosphere, 2019, 233: 896.

[26] 司圆圆, 张卓婷, 王林钰, 等. 全氟化合物污染特征及生态风险评估[J]. 化工管理, 2020(34): 98.

[27] 刘建超, 郑超亚, 任静华, 等. 平原河湖系统中典型全氟化合物的胶体吸附特征及生态风险评估[J]. 湖泊科学, 2021, 33(6): 1714.

[28] 武倩倩, 吴强, 宋帅, 等. 天津市主要河流和土壤中全氟化合物空间分布、 来源及风险评价[J]. 环境科学, 2021, 42(8): 3682.

[29] HE X M, LI A, WANG S Y, et al. Perfluorinated substance assessment in sediments of a large-scale reservoir in Danjiangkou, China [J]. Environmental Monitoring and Assessment, 2018, 190(2): 66.

[30] JEGUIRIM M, BELHACHEMI M, LIMOUSY L, et al. Adsorption / reduction of nitrogen dioxide on activated carbons: textural properties versus surface chemistry: a review [J]. Chemical Engineering Journal, 2018, 347: 493.

[31] MENG P P, FANG X L, MIAMAITI A, et al. Efficient removal of perfluorinated compounds from water using a regenerable magnetic activated carbon[J]. Chemosphere, 2019, 224: 187.

[32] WANG F, LIU C S, SHIH K. Adsorption behavior of perfluorooctanesulfonate ( PFOS ) and perfluorooctanoate ( PFOA) onboehmite[J]. Chemosphere, 2012, 89(8): 1009.

[33] LU X Y, DENG S B, WANG B, et al. Adsorption behavior and mechanism of perfluorooctane sulfonate on nanosized inorganic oxides[J]. Journal of Colloid and Interface Science, 2016, 474: 199.

[34] ZAGGIA A, CONTE L, FALLETTI L, et al. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants[J]. Water Research, 2016, 91: 137.

[35] 滕影, 王雯冉, 黄柳青, 等. 全氟烷基化合物的去除技术研究进展[J]. 环境化学, 2023, 42(7): 2210.

[36] 顾玉蓉, 陈鑫烨, 董紫君, 等. 碱性条件下的高频超声降解全氟辛酸[J]. 净水技术, 2021, 40(12): 116.

[37] LEE Y C, CHEN M J, HUANG C P, et al. Efficient sonochemical degradation of perfluorooctanoic acid using periodate [J]. Ultrasonics Sonochemistry, 2016, 31: 499.

[38] RODRIGUEZ-FREIRE L, BALACHANDRAN R, SIERRAALVAREZ R, et al. Effect of sound frequency and initial concentration on the sonochemical degradation of perfluorooctane sulfonate(PFOS) [J]. Journal of Hazardous Materials, 2015, 300: 662.

[39] 宋怡明, 徐少伟, 宋昊, 等. 高级氧化法污水处理技术综述[J]. 山东化工, 2019, 48(24): 211.

[40] WANG Y, ZHANG P Y. Effects of pH on photochemical decomposition of perfluorooctanoic acid in different atmospheres by 185 nm vacuum ultraviolet[ J]. Journal of Environmental Sciences, 2014, 26(11): 2207.

[41] BARISCI S, SURI R. Removal of polyfluorinated telomer alcohol by advanced oxidation processes (AOPs) in different water matrices and evaluation of degradation mechanisms[ J]. Journal of Water Process Engineering, 2020: 101745.

[42] REN Z F, BERGMANN U, LEIVISKA T. Reductive degradation of perfluorooctanoic acid in complex water matrices by using the UV/ sulfite process[J]. Water Research, 2021, 205: 117676.

[43] SONG Z, TANG H Q, WANG N, et al. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system[ J]. Journal of Hazardous Materials, 2013, 262: 332.[44] LI Z D, LI S Y, TANG Y M, et al. Highly efficient degradation of perfluorooctanoic acid: an integrated photo-electrocatalytic ozonation and mechanism study[J]. Chemical Engineering Journal, 2020, 391: 123533.

[45] LI T F, WANG C S, WANG T C, et al. Highly efficient photocatalytic degradation toward perfluorooctanoic acid by bromine doped BiOI with high exposure of (001) facet [J]. Applied Catalysis B: Environmental, 2020, 268: 118442.

[46] TROJANOWICZ M, ANNA B C, IWONAI B, et al. Advanced oxidation / reduction processes treatment for aqueous perfluorooctanoate(PFOA) and perfluorooctanesulfonate (PFOS): a review of recent advances [J]. Chemical Engineering Journal, 2018, 336: 170.

[47] NIU J F, LI Y, SHANG E, et al. Electrochemical oxidation of perfluorinated compounds in water [J]. Chemosphere, 2016, 146: 526.

[48] WANG K X, HUANG D H, WANG W L, et al. Enhanced decomposition of long-chain perfluorocarboxylic acids(C9-C10) by electrochemical activation of peroxymonosulfate in aqueous solution[J]. Science of the Total Environment, 2020, 758: 143666.

[49] ZHUO Q F, DENG S B, YANG B, et al. Efficient electrochemical oxidation of perfluorooctanoate using a Ti / SnO2-Sb-Bi anode[J]. Environmental Science & Technology, 2011, 45 (7): 2973.

[50] 许罗, 林秋风, 李聪, 等. 典型全氟化合物污染现状及其处理技术研究进展[J]. 中国给水排水, 2022, 38(10): 56.

[51] YU Y C, CHE S, REN C X, et al. Microbial defluorination of unsaturated per- and polyfluorinated carboxylic acids under anaerobic and aerobic conditions: a structure specificity study [J]. Environmental Science & Technology, 2022, 56(8): 4894.

[52] YI S J, MORSON N, EDWARDS E A, et al. Anaerobic microbial dechlorination of 6 ∶ 2 chlorinated polyfluorooctane ether sulfonate and the underlying mechanisms[J]. Environmental Science & Technology, 2022, 56(2): 907.

[53] 赵淑艳, 马新新, 钟文珏, 等. 蚯蚓对土壤中 8 ∶ 2 与 10 ∶ 2 氟调醇的生物富集与转化[J]. 中国科学: 化学, 2014, 44(11): 1823