2024年 03期

Preparation of Tungsten Oxide-Zinc Oxide Memristor and Its Neural Synaptic Property

摘要(Abstract):

为了实现忆阻器在神经形态计算中的应用,采用射频磁控溅射技术,在氧化铟锡导电玻璃衬底上依次生长氧化钨、氧化锌异质结的阻变层和银顶电极,制备氧化钨-氧化锌忆阻器,对制得忆阻器的结构、化学组成及电学性能进行表征和测试。结果表明:制得的忆阻器具有类似生物的神经突触特性,阻变行为由界面势垒调控机制主导作用;制得的忆阻器交叉阵列用于分类识别的平均正确率达到86.3%,接近中央处理器网络的平均正确率87.4%,可用于神经形态计算。

关键词(KeyWords):忆阻器;神经突触;射频磁控溅射;神经形态计算;分类识别;神经网络

基金项目(Foundation): 国家自然科学基金项目(62174068)

作者(Author): 李守亮,岳文静,李阳

DOI: 10.13349/j.cnki.jdxbn.20230419.001

参考文献(References):

[1] MUTHUSWAMY B,CHUA L O.Simplest chaotic circuit[J].International Journal of Bifurcation and Chaos,2010,20(5):1567.

[2] MIGLIATO MAREGA G,ZHAO Y F,AVSAR A,et al.Logic-in-memory based on an atomically thin semiconductor[J].Nature,2020,587(7832):72.

[3] YANG J Q,WANG R P,REN Y,et al.Neuromorphic engineering:from biological to spike-based hardware nervous systems[J].Advanced Materials,2020,32(52):2003610.

[4] CITRI A,MALENKA R C.Synaptic plasticity:multiple forms,functions,and mechanisms[J].Neuropsychopharmacology,2008,33(1):18.

[5] XIAO W,SHAN L B,ZHANG H T,et al.High photosensitivity light-controlled planar ZnO artificial synapse for neuromorphic computing[J].Nanoscale,2021,13(4):2502.

[6] LAN S Q,WANG X Y,YU R J,et al.Organic synaptic transistors based on a hybrid trapping layer for neuromorphic computing[J].IEEE Electron Device Letters,2022,43(8):1255.

[7] SUN K X,CHEN J S,YAN X B.The future of memristors:materials engineering and neural networks[J].Advanced Functional Materials,2021,31(8):2006773.

[8] HASINA D,MANDAL A,BASU N,et al.Realization of short-and long-term memories at nanoscale and their temporal evolution in two-terminal memristive synapses[J].Applied Surface Science,2023,2023(611):155563.

[9] CAO G M,MENG P,CHEN J G,et al.2D material based synaptic devices for neuromorphic computing[J].Advanced Functional Materials,2021,31(4):2005443.

[10] ZHOU Y H,LI J,YANG Y H,et al.Artificial synapse emulated through fully aqueous solution-processed low-voltage In2O3 thin-film transistor with Gd2O3 solid electrolyte[J].ACS Applied Materials & interfaces,2019,12(1):980.

[11] WANG H L,ZHAO Q,NI Z J,et al.A ferroelectric/electrochemical modulated organic synapse for ultraflexible,artificial visual-perception system[J].Advanced Materials,2018,30(46):1803961.

[12] HUH W,LEE D,LEE C H.Memristors based on 2D materials as an artificial synapse for neuromorphic electronics[J].Advanced Materials,2020,32(51):2002092.

[13] TANG K,WANG Y,GONG C H,et al.Electronic and photoelectronic memristors based on 2D materials[J].Advanced Electronic Materials,2022,8(4):2101099.

[14] WANG Z Q,XU H Y,LI X H,et al.Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor[J].Advanced Functional Materials,2012,22(13):2760.

[15] ZHANG X M,LIU S,ZHAO X L.Emulating short-term and long-term plasticity of bio-synapse based on Cu/α-Si/Pt memristor[J].IEEE Electron Device Letters,2017,38(9):1208.

[16] WANG T Y,MENG J L,CHEN L.Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications[J].InfoMat,2021,3(2):212.

[17] CHOI W,GI S G,LEE D,et al.WOx-based synapse device with excellent conductance uniformity for hardware neural networks[J].IEEE Transactions on Nanotechnology,2020,2020(19):597.

[18] CLAROS M,SETKA M,JIMENEZ Y P,et al.AACVD synthesis and characterization of iron and copper oxides modified ZnO structured films[J].Nanomaterials,2020,10(3):471.

[19] YAN X B,ZHAO J H,LIU S,et al.Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing[J].Advanced Functional Materials,2018,28(1):1705320.

[20] WANG W X,GAO S,LI Y,et al.Artificial optoelectronic synapses based on TiNxO2-x/MoS2 heterojunction for neuromorphic computing and visual system[J].Advanced Functional Materials,2021,31(34):2101201.

[21] ZHOU L,YANG S W,DING G Q,et al.Tunable synaptic behavior realized in C3N composite based memristor[J].Nano Energy,2019,2019(58):299.

[22] WANG Y Q,WANG W X,ZHANG C W,et al.A digital-analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing[J].ACS Applied Electronic Materials,2022,4(7):3525.

[23] PEI Y F,ZHOU Z Y,CHEN A P,et al.A carbon-based memristor design for associative learning activities and neuromorphic computing[J].Nanoscale,2020,12(25):13531.

[24] ZHOU J M,LIU N,ZHU L Q,et al.Energy-efficient artificial synapses based on flexible IGZO electric-double-layer transistors[J].IEEE Electron Device Letters,2015,36(2):198.

[25] GUL F,EFEOGLU H.Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor[J].Superlattices and Microstructures,2017,2017(101):178.

[26] LIU Y H,WANG Y S,WANG C X,et al.Improvement on synaptic properties of WOx-based memristor by doping Ti into WOx[J].Journal of Physics D:Applied Physics,2021,54(45):455107.

[27] YAO P,WU H Q,GAO B,et al.Fully hardware-implemented memristor convolutional neural network[J].Nature,2020,577(7792):643.

[28] FENG X W,LI S F,WONG S L,et al.Self-selective multi-terminal memtransistor crossbar array for in-memory computing[J].ACS Nano,2021,15(1):1764.

[29] LI S F,PAM M E,LI Y S,et al.Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware[J].Advanced Materials,2022,34(25):2103376.

[30] CHENG S Q,ZHONG L,YIN J X,et al.Controllable digital and analog resistive switching behavior of 2D layered WSe2 nanosheets for neuromorphic computing[J].Nanoscale,2023,15(10):4805.