2024年 04期

Degradation of Trichloroethylene from Groundwater by Sodium Percarbonate and Sodium Persulfate Double Oxidation System


摘要(Abstract):

为了解决单一氧化体系降解地下水中三氯乙烯的效率不高的问题,采用柠檬酸螯合Fe~(2+)催化过碳酸钠与过硫酸钠协同降解地下水中的三氯乙烯,考察过碳酸钠和过硫酸钠的配比、水质条件(pH、典型阴离子)以及三氯乙烯的初始浓度对三氯乙烯降解效率的影响。结果表明,当三氯乙烯的初始浓度为0.16 mmol/L时,在中性条件下,柠檬酸螯合Fe~(2+)催化过碳酸钠-过硫酸钠双氧化体系可以显著提高地下水中三氯乙烯的降解速率;三氯乙烯的降解受过碳酸钠与过硫酸钠的配比的影响,过碳酸钠、过硫酸钠、柠檬酸、 Fe~(2+)、三氯乙烯的物质的量比为10∶8∶5∶10∶1时,反应180 min后三氯乙烯的降解率为98.5%;随着反应体系pH增大,三氯乙烯的降解率逐渐降低;地下水中常见的阴离子SO_4~(2-)、 NO~-_3对该双氧化体系去除地下水中三氯乙烯的影响较小,但较高浓度的HCO~-_3、 Cl~-显著抑制三氯乙烯的降解;自由基清扫实验确定双氧化体系中存在氢氧自由基HO·、硫酸根自由基SO~-_4·、超氧自由基O~-_2·等自由基,且HO·对三氯乙烯的降解起主导作用。

关键词(KeyWords): 地下水修复;三氯乙烯;原位化学氧化技术;双氧化体系

基金项目(Foundation): 山东省自然科学基金项目(ZR2021ME142)

作者(Author): 孙先峰,王晓东,冯岩,赵立信

DOI: 10.13349/j.cnki.jdxbn.20240620.001

参考文献(References):

[1] 丁宇,张祥,吕树光.Fe3+催化过氧化钙体系降解水中三氯乙烯[J].环境污染与防治,2018,40(4):392.

[2] HUANG J Y,ZHOU Z Y,DANISH M,et al.Synergistic streng-thening of SPC/Fe(II) system by CA coupled with mZVI for trichloroethylene degradation in SDS-containing aqueous solution[J].Journal of Environmental Chemical Engineering,2022,10(5):108276.

[3] OH S Y,KANG S G,KIM D W,et al.Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides[J].Chemical Engineering Journal,2011,172(2/3):641.

[4] WALDEMER R H,TRATNYEK P G.Kinetics of contaminant degradation by permanganate[J].Environmental Science & Technology,2006,40(3):1055.

[5] BACIOCCHI R,D′APRILE L,INNOCENTI I,et al.Development of technical guidelines for the application of in-situ chemical oxidation to groundwater remediation[J].Journal of Cleaner Production,2014,77:47.

[6] WEI K H,MA J,XI B D,et al.Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J].Journal of Hazardous Materials,2022,432:128738.

[7] GU C,LIU S,LIANG J,et al.Degradation of 1,2,3-trichloropropane by pyrite activating sodium percarbonate and the implications for groundwater remediation[J].Journal of Environmental Chemical Engineering,2023,11(1):109217.

[8] PIMENTEL J A I,DONG C D,GARCIA-SEGURA S,et al.Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation[J].Science of the Total Environment,2021,781:146411.

[9] LIU X,HE S,YANG Y,et al.A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water[J].Environmental Research,2021,200:111371.

[10] DANISH M,GU X,LU S,et al.Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite[J].Chemical Engineering Journal,2017,308:396.

[11] CAVALCANTI J V F L,FRAGA T J M,LOUREIRO LEITE M A,et al.In-depth investigation of sodium percarbonate as oxidant of PAHs from soil contaminated with diesel oil[J].Environmental Pollution,2021,268(PB):115832.

[12] DEVI P,DAS U,DALAI A K.In-situ chemical oxidation:principle and applications of peroxide and persulfate treatments in wastewater systems[J].Science of the Total Environment,2016,571:643.

[13] HAN D H,WAN J Q,MA Y W,et al.New insights into the role of organic chelating agents in Fe(II) activated persulfate processes[J].Chemical Engineering Journal,2015,269:425.

[14] LIANG C J,SU H W.Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J].Industrial & Engineering Chemistry Research,2009,48(11):5558-5562.

[15] YU S X,GU X G,LU S G,et al.Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II)[J].Chemical Engineering Journal,2018,333:122.

[16] HAN D H,WAN J Q,MA Y,et al.Enhanced decolorization of Orange G in a Fe(II)-EDDS activated persulfate process by acce-lerating the regeneration of ferrous iron with hydroxylamine[J].Chemical Engineering Journal,2014,256:316.

[17] LUO C W,LI M A,CHENG X X,et al.Degradation of iopami-dol by UV365/NaClO:roles of reactive species,degradation mechanism,and toxicology[J].Water Research,2022,222:118840.

[18] FU X R,GU X G,LU S G,et al.Benzene oxidation by Fe(III)-catalyzed sodium percarbonate:matrix constituent effects and degradation pathways[J].Chemical Engineering Journal,2017,309:22.

[19] PENG J B,SHI H H,LI J H,et al.Bicarbonate enhanced removal of triclosan by copper(II) catalyzed Fenton-like reaction in aqueous solution[J].Chemical Engineering Journal,2016,306:484.

[20] XU A H,LI X X,XIONG H,et al.Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide[J].Chemosphere,2011,82(8):1190.

[21] 向令,李佳乐,孙占学,等.Fe(II)激活过硫酸钠去除水中磺胺甲口恶唑研究[J].水处理技术,2020,46(12):68.

[22] ZUO Z H,CAI Z L,KATSUMURA Y,et al.Reinvestigation of the acid-base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants[J].Radiation Physics and Chemistry,1999,55(1):15.

[23] 臧学轲.羟胺促进柠檬酸-Fe2+活化过碳酸钠降解三氯乙烯[J].华东理工大学学报(自然科学版),2018,44(3):454.

[24] LIAO C H,KANG S F,WU F A.Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process[J].Chemosphere,2001,44(5):1193.

[25] DE LAAT J,LE G T,LEGUBE B.A comparative study of the effects of chloride,sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2[J].Chemosphere,2004,55(5):715.

[26] PIGNATELLO J J,OLIVEROS E,MACKAY A.Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J].Critical Reviews in Environmental Science and Technology,2006,36(1):1.

[27] DE LAAT J,LE T G.Kinetics and modeling of the Fe (III)/H2O2 system in the presence of sulfate in acidic aqueous solutions[J].Environmental Science and Technology,2005,39(6):1811.