参考文献(References):
[1] 袁晓铭,曹振中.砂砾土液化判别的基本方法及计算公式[J].岩土工程学报,2011,33(4):509.
[2] 叶斌,宋思聪,倪雪倩.制样方法对砂土液化力学性质影响的离散元模拟[J].同济大学学报(自然科学版),2022,50(7):998.
[3] SEED B H,TOKIMATSU K,HARDER L F,et al.Influence of SPT procedures in soil liquefaction resistance evaluations[J].Journal of Geotechnical Engineering,1985,111(12):1425.
[4] 张思宇,李兆焱,袁晓铭.基于静力触探试验的液化判别新方法[J].岩土力学,2022,43(6):1596.
[5] 肖诗豪,程小久,汪华安,等.基于标贯试验的砂土液化概率判别法[J].土木与环境工程学报(中英文),2022,44(5):87.
[6] 潘建平,孔宪京,邹德高.基于Logistic回归模型的砂土液化概率评价[J].岩土力学,2008,29(9):2567.
[7] CHERN S G,LEE C Y,WANG C C.CPT-based liquefaction assessment by using fuzzy-neural network[J].Journal of Marine Science and Technology,2008,16(2):139.
[8] 林志红,项伟.基于贝叶斯正则化BP神经网络的砂土地震液化研究[J].安全与环境工程,2011,18(2):23.
[9] 范珂显.基于SGO-RBF神经网络的地震液化侧移预测[D].武汉:中国地震局地震研究所,2021.
[10] 胡记磊.基于贝叶斯网络的地震液化风险分析模型研究[D].大连:大连理工大学,2016.
[11] 张紫昭,陈巨鹏,陈凯,等.砂土地震液化预测的Bayes判别模型及其应用[J].桂林理工大学学报,2014,34(1):63.
[12] 彭刘亚,解惠婷,冯伟栋.基于随机森林算法的砂土液化预测方法[J].物探与化探,2020,44(6):1429.
[13] LIU L,ZHANG S S,YAO X F,et al.Liquefaction evaluation based on shear wave velocity using random forest[J].Advances in Civil Engineering,2021,2021:1.
[14] 毛志勇,黄春娟,路世昌.基于PSO-SVM的砂土地震液化预测模型[J].中国安全科学学报,2018,28(3):25.
[15] 王帅伟,于少将,李绍康,等.基于RS-PCA-GA-SVM的砂土液化预测方法研究[J].地震工程学报,2019,41(2):445.
[16] 李冰瑶.基于剪切波速和支持向量机的砂土地震液化预测研究[D].长春:吉林建筑大学,2020.
[17] CETIN K O,SEED R B,KAYEN R E,et al.SPT-based probabilistic and deterministic assessment of seismic soil liquefaction triggering hazard[J].Soil Dynamics and Earthquake Engineering,2018,115:708.
[18] PROKHORENKOVA L,GUSEV G,VOROBEV A,et al.CatBoost:unbiased boosting with categorical features[EB/OL].(2019-01-20) [2023-01-08].https://doi.org/10.48550/arXiv.1706.09516.
[19] HWANG J H,YANG C W.Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data[J].Soil Dynamics and Earthquake Engineering,2001,21(3):243-247.