2024年 05期

Preparation of Ethanol-based Proton-conducting Solid Oxide Fuel Cell and Its Performance


摘要(Abstract):

针对质子导体乙醇燃料电池运行中阳极催化活性低以及积碳问题,采用原位成相法制备一种具有树枝孔状阳极结构的质子导体固体氧化物燃料电池,通过在树枝孔状阳极微通道内负载高效纳米催化剂构建微通道反应器来实现乙醇燃料的内部转化。结果表明:当燃料中乙醇的体积分数为10%、操作温度为650℃时,电池的峰值功率密度由0.076 W/cm~2增加到0.161 W/cm~2,电池最大功率密度增加111%;在电流密度0.5 A/cm~2时进行放电稳定性测试,电池稳定运行57 h,且纤维催化剂的高催化活性加速碳的氧化反应,促进碳的气化,电池阳极-电解质界面未发现明显碳沉积。

关键词(KeyWords): 质子导体固体氧化物燃料电池;阳极材料;乙醇燃料;纤维催化剂

基金项目(Foundation): 山东省自然科学基金项目(ZR2019MEM055)

作者(Author): 党昊宸,季英瑞,宋来振,魏郁林,史国普

DOI: 10.13349/j.cnki.jdxbn.20240326.001

参考文献(References):

[1] BELLO I T,ZHAI S,ZHAO S Y,et al.Scientometric review of proton-conducting solid oxide fuel cells[J].International Journal of Hydrogen Energy,2021,46(75):37406.

[2] TANAKA T,KAMIKO H,AKIBA K,et al.Energetic analyses of installing SOFC co-generation systems with EV charging equipment in Japanese cafeteria[J].Energy Conversion and Management,2017,153:435.

[3] LO FARO M,REIS R M,SAGLIETTI G G A,et al.Nickel-copper/gadolinium-doped ceria (CGO) composite electrocatalyst as a protective layer for a solid-oxide fuel cell anode fed with ethanol[J].Chemelectrochem,2014,1(8):1395.

[4] FARRELL B,LINIC S.Direct electrochemical oxidation of ethanol on SOFCs:improved carbon tolerance of Ni anode by alloying[J].Applied Catalysis B:Environmental,2016,183:386.

[5] WANG T P,TIAN Y Y,LI T P,et al.Essential microstructure of cathode functional layers of solid oxide electrolysis cells for CO2 electrolysis[J].Journal of CO2 Utilization,2019,32:214.

[6] KIM S K,MEHRAN M T,MUSHTAQ U,et al.Effect of reverse Boudouard reaction catalyst on the performance of solid oxide carbon fuel cells integrated with a dry gasifier[J].Energy Conversion and Management,2016,130:119.

[7] MUDIYANSELAGE K,AL-SHANKITI I,FOULIS A,et al.Reactions of ethanol over CeO2 and Ru/CeO2 catalysts [J].Applied Catalysis B:Environmental,2016,197:198.

[8] FAN D J,GAO Y,LIU F S,et al.Autothermal reforming of methane over an integrated solid oxide fuel cell reactor for power and syngas co-generation[J].Journal of Power Sources,2021,513:230536.

[9] LIU L M,SUN K N,WU X Y,et al.Improved performance of ammonia-fueled solid oxide fuel cell with SSZ thin film electrolyte and Ni-SSZ anode functional layer[J].International Journal of Hydrogen Energy,2012,37(14):10857.

[10] WEI T,QIU P,JIA L C,et al.Power and carbon monoxide co-production by a proton-conducting solid oxide fuel cell with La0.6Sr0.2Cr0.85Ni0.15O3-δ for on-cell dry reforming of CH4 by CO2[J].Journal of Materials Chemistry A,2020,8(19):9806.

[11] MA Y X,MA Y Y,LI J J,et al.CeO2-promotion of NiAl2O4 reduction via CeAlO3 formation for efficient methane reforming[J].Journal of the Energy Institute,2020,93(3):991.

[12] MA Y Y,MA Y X,ZHAO Z B,et al.Comparison of fibrous catalysts and monolithic catalysts for catalytic methane partial oxidation[J].Renewable Energy,2019,138:1010.

[13] LI N Q,PU J,CHI B,et al.Ethanol steam reforming with a Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ catalyst[J].Materials Today Energy,2019,12:371.

[14] NGUYEN N T Q,YOON H H.Preparation and evaluation of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells[J].Journal of Power Sources,2013,231:213.

[15] ZHONG Z Y,LI Z Q,LI J,et al.A facile method to synthesize BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb)nanopowders for the application on highly conductive proton-conducting electrolytes[J].International Journal of Hydrogen Energy,2022,47(94):40054.

[16] DONG D H,XU S S,SHAO X,et al.Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO2 electrolysis without safe gas[J].Journal of Materials Chemistry A,2017,5(46):24098.

[17] SHAO X,DONG D H,PARKINSON G,et al.A microchanneled ceramic membrane for highly efficient oxygen separation[J].Journal of Materials Chemistry A,2013,1:9641.