2025年 01期

Progress of Hydrorefining of Low-temperature Coal Tar

摘要(Abstract):

针对低温煤焦油粗放式燃烧导致资源利用率低的问题,对低温煤焦油加氢精制生产清洁燃料油和化学品以提高低温煤焦油附加值的研究现状进行综述,包括加氢精制反应机制和加氢精制催化剂2个方面,重点总结和分析了酚类加氢脱氧、噻吩类加氢脱硫、含氮化合物(如吡啶、喹啉等)加氢脱氮反应机制和催化剂研发方面的基础研究进展。最后,根据低温煤焦油加氢精制技术存在的问题,展望了低温煤焦油未来的研究方向。

关键词(KeyWords): 低温煤焦油;加氢脱硫;加氢脱氮;加氢脱氧;催化剂;

基金项目(Foundation): 国家自然科学基金项目(52070089)

作者(Author): 岳静春,刘媛媛,李素月,牧辉,张永芳

DOI: 10.13349/j.cnki.jdxbn.20240423.002

参考文献(References):

[1] 徐春霞.煤焦油的性质与加工利用[J].洁净煤技术,2013,19(5):63.

[2] 邱泽刚,李志勤.煤焦油加氢技术[M].北京:化学工业出版社,2020.

[3] 汪叶洋.煤焦油中含氧化合物的分离与分析[D].武汉:武汉科技大学,2022.

[4] 赵静.低温煤焦油加氢催化剂的制备及催化性能研究 [D].上海:华东理工大学,2016.

[5] 潘娜.中低温煤焦油的化学组成[D].北京:中国石油大学,2015.

[6] LAURITSEN J V,NYBERG M,N?RSKOV J K,et al.Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy[J].Journal of Catalysis,2004,224(1):94.

[7] JIAN M,KAPTEIJN F,PRINS R.Kinetics of the hydrodenitro-genation of ortho-propylaniline over NiMo(P)/Al2O3 catalysts[J].Journal of Catalysis,1997,168(2):491.

[8] 石玉林,李大东,习远兵,等.催化裂化汽油馏分中烯烃的加氢饱和反应规律研究[J].石油炼制与化工,2010,41(3):30.

[9] GIRGIS M J,GATES B C.Reactivities,reaction networks,and kinetics in high-pressure catalytic hydroprocessing[J].Industrial & Engineering Chemistry Research,1991,30(9):2021.

[10] 白建明,李冬,李稳宏,等.煤焦油深加工技术[M].北京:化学工业出版社,2016.

[11] TELES C A,CIOTONEA C,VALANT A L,et al.Optimization of catalyst activity and stability in the m-cresol hydrodeoxygenation through Ni particle size control[J].Applied Catalysis B:Environmental,2023,338:123030.

[12] GONCALVES V O O,DE SOUZA P M,DA SILVA V T,et al.Kinetics of the hydrodeoxygenation of cresol isomers over Ni2P/SiO2:proposals of nature of deoxygenation active sites based on an experimental study[J].Applied Catalysis:B:Environmental,2017,205:365.

[13] 陈健.覆碳氧化铝催化剂的制备与加氢脱硫的应用研究[D].北京:中国石油大学(北京),2021.

[14] MA X L,SAKANISHI K,ISODA T,et al.Determination of sulfur compounds in a non-polar fraction of vacuum gas oil[J].Fuel,1997,76(4):329.

[15] MA X L,SAKANISHI K,MOCHIDA I.Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel[J].Industrial & Engineering Chemistry Research,1994,33(2):218.

[16] 李冬,李稳宏,杨小彦,等.煤焦油加氢脱硫动力学研究[J].化学工程,2010,38(6):52.

[17] JIAN M,PRINS R.Mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al2O3 catalysts[J].Journal of Catalysis,1998,179(1):18.

[18] BUNCH A,ZHANG L P,KARAKAS G,et al.Reaction network of indole hydrodenitrogenation over NiMoS/γ-Al2O3 catalysts[J].Applied Catalysis A:General,2000,190(1/2):51.

[19] TELES C A,RABELO-NETO R C,DE LIMA J R,et al.The effect of metal type on hydrodeoxygenation of phenol over silica supported catalysts[J].Catalysis Letters,2016,146:1853.

[20] WANG C,MIRONENKO A V,RAIZADA A,et al.Mechanistic study of the direct hydrodeoxygenation of m-cresol over WOx-decorated Pt/C catalysts[J].ACS Catalysis,2018,8(9):7751.

[21] DUAN H H,LIU J C,XU M,et al.Molecular nitrogen promotes catalytic hydrodeoxygenation[J].Nature Catalysis,2019,2:1078.

[22] WANG E H,HU D,XIAO C K,et al.Highly dispersed Pt on core-shell micro-mesoporous composites assembled by mordenite nanocrystals for selective hydrogenation of polycyclic aromatics[J].Fuel,2022,331(2):125852.

[23] VALLéS V,LEDESMA B,JUáREZ J,et al.Noble-bimetallic supported CMK-3 as a novel catalyst for hydrogenation of tetralin in the presence of sulfur and nitrogen[J].Fuel,2017,188:155.

[24] KIM H J,SONG C S.A refined design concept for sulfur-tolerant Pd catalyst supported on zeolite by shape-selective exclusion and hydrogen spillover for hydrogenation of aromatics[J].Journal of Catalysis,2021,403:203.

[25] YANG F F,LIU D,ZHAO Y T,et al.Size dependence of vapor phase hydrodeoxygenation of m-cresol on Ni/SiO2 catalysts[J].ACS Catalysis,2018,8(3):1676.

[26] YANG F F,KOMARNENI M R,LIBRETTO N J,et al.Elucidating the structure of bimetallic NiW/SiO2 catalysts and its consequences on selective deoxygenation of m-cresol to toluene[J].ACS Catalysis,2021,11(5):2935.

[27] BOSCAGLI C,YANG C W,WELLE A,et al.Effect of pyrolysis oil components on the activity and selectivity of nickel-based catalysts during hydrotreatment[J].Applied Catalysis A:General,2017,544:161.

[28] YANG F F,WANG H,HAN J Y,et al.Enhanced selective deoxygenation of m-cresol to toluene on Ni/SiO2 catalysts derived from nickel phyllosilicate[J].Catalysis Today,2019,330:149.

[29] BAHRANI S S,KHODADADI A A,MORTAZAVI Y.Selective atomic layer deposition of NiO on MoOx/γ-Al2O3 to enhance the active catalytic phase formation for hydrodesulfurization of dibenzothiophene[J].Applied Surface Science,2023,625:157141.

[30] ZHU T H,LIU K,WANG H Y,et al.Comparative study of hydrodeoxygenation performance over Ni and Ni2P catalysts for upgrading of lignin-derived phenolic compound[J].Fuel,2022,331(1):125663.

[31] GUO K,DING Y,YU Z X.One-step synthesis of ultrafine MoNiS and MoCoS monolayers as high-performance catalysts for hydrodesulfurization and hydrodenitrogenation[J].Applied Catalysis B:Environmental,2018,239:439.

[32] LIU G L,ROBERTSON A W,LI M M J,et al.MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J].Nature Chemistry,2017,9:815.

[33] SCHLATTER J C,OYAMA S T,METCALFE J E,et al.Catalytic behavior of selected transition metal carbides,nitrides,and borides in the hydrodenitrogenation of quinoline[J].Industrial & Engineering Chemistry Research,1988,27(9):1648.

[34] CELZARD A,MARêCHé J F,FURDIN G,et al.Preparation and catalytic activity of active carbon-supported Mo2C nanoparticles[J].Green Chemistry,2005,7:784.

[35] AL-MEGREN H A,GONZáLEZ-CORTéS S L,XIAO T C,et al.A comparative study of the catalytic performance of Co-Mo and Co(Ni)-W carbide catalysts in the hydrodenitrogenation (HDN) reaction of pyridine[J].Applied Catalysis A:General,2007,329:36.

[36] OYAMA S T.Novel catalysts for advanced hydroprocessing:transition metal phosphides[J].Journal of Catalysis,2003,216(1/2):343.

[37] GON?ALVES V O O,DE SOUZA P M,CABIOC’H T,et al.Hydrodeoxygenation of m-cresol over nickel and nickel phosphide-based catalysts:influence of the nature of the active phase and the1 support[J].Applied Catalysis B:Environmental,2017,219:624.

[38] OYAMA S T,GOTT T,ZHAO H Y,et al.Transition metal phosphide hydroprocessing catalysts:a review[J].Catalysis Today,2009,143(1/2):94.

[39] YU Z Q,WANG A J,LIU S,et al.Hydrodeoxygenation of phenolic compounds to cycloalkanes over supported nickel phosphides[J].Catalysis Today,2019,319:53.

[40] LIN R Y,PAN H D,XU W D,et al.Hydrodesulfurization of benzothiophene on Ni2P surface[J].Energy Exploration & Exploitation,2020,38(6):2711.

[41] ZHAO H Y,OYAMA S T,FREUND H J,et al.Nature of active sites in Ni2P hydrotreating catalysts as probed by iron substitution[J].Applied Catalysis B:Environmental,2015,164:204.

[42] OYAMA S T,ZHAO H Y,FREUND H J,et al.Unprecedented selectivity to the direct desulfurization (DDS) pathway in a highly active FeNi bimetallic phosphide catalyst[J].Journal of Catalysis,2012,285(1):1.

[43] BOWKER R H,LAYAN SAVITHRA G H,CARRILLO B A,et al.Effect of particle size on the sulfur resistance of nickel phosphide hydrodesulfurization catalysts[J].Journal of Catalysis,2023,425:77.

[44] 张亮亮,汪镭,陈霄,等.Co2Si@C催化剂的合成及其加氢脱硫性能[J].分子催化,2020,34(2):116.

[45] XIE W,ZHANG Y H,LIEW K Y,et al.Effect of catalyst confinement and pore size on Fischer-Tropsch synthesis over cobalt supported on carbon nanotubes[J].Science China Chemistry,2012,55:1811.

[46] 蒋晨光.NiMoC/Hβ催化剂的制备及在低温煤焦油加氢中的应用研究[D].北京:中国矿业大学(北京),2020.

[47] DE SOUZA P M,INOCêNCIO C V M,PEREZ V I,et al.Hydrodeoxygenation of phenol using nickel phosphide catalysts:study of the effect of the support[J].Catalysis Today,2020,356:372.

[48] VATUTINA Y V,KLIMOV O V,NADEINA K A,et al.Influence of boron addition to alumina support by kneading on morphology and activity of HDS catalysts[J].Applied Catalysis B:Environmental,2016,199:23.

[49] SHI Y C,XING E H,ZHANG J M,et al.Temperature-dependent selectivity of hydrogenation/hydrogenolysis during phenol conversion over Ni catalysts[J].ACS Sustainable Chemistry & Engineering,2019,7(10):9648.

[50] 蔡金鹏,王非,胡建恒,等.NiMoS/ZSM-5-MCM-41催化剂的制备及其加氢脱硫性能[J].精细化工,2017,34(8):891.

[51] LEDESMA B C,ANUNZIATA O A,BELTRAMONE A R.HDN of indole over Ir-modified Ti-SBA-15[J].Applied Catalysis B:Environmental,2016,192:220.

[52] LIU X D,LIU J J,LI L,et al.Hydrodesulfurization of dibenzothiophene on TiO2-x-modified Fe-based catalysts:electron transfer behavior between TiO2-x and Fe species[J].ACS Catalysis,2020,10(16):9028-9030.

[53] LI H,LIU J J,LI J C,et al.Promotion of the inactive iron sulfide to an efficient hydrodesulfurization catalyst[J].ACS Catalysis,2017,7(7):4805.

[54] LU K L,YIN F,WEI X Y,et al.Promotional effect of metallic Co and Fe on Ni-based catalysts for p-cresol deoxygenation[J].Fuel,2022,321:124033.

[55] LIU J X,LIU X Q,YAN R X,et al.Active phase morphology engineering of NiMo/Al2O3 through La introduction for boosting hydrodesulfurization of 4,6-DMDBT[J].Petroleum Science,2023,20:1235.

[56] WU X X,LIU C J,WANG H,et al.Origin of strong metal-support interactions between Pt and anatase TiO2 facets for hydrodeoxygenation of m-cresol on Pt/TiO2 catalysts[J].Journal of Catalysis,2023,418:203.

[57] 秦学涛,周子乔,马丁.金属/金属氧化物催化剂的SMSI效应[J].化学进展,2023,35(6):928.