2025年 01期

Genome-wide Identification and Expression Analysis of CDC48 Gene Family in Maize

摘要(Abstract):

为了揭示玉米CDC48基因功能和机制,采用生物信息学方法在玉米基因组水平鉴定CDC48基因家族成员,并运用实时荧光定量聚合酶链式反应方法分析家族基因逆境和组织表达模式。结果表明:在全基因组水平筛选鉴定出14个ZmCDC48基因;染色体定位分析显示ZmCDC48基因家族成员不均匀地分布在9条染色体上;系统进化分析将14个ZmCDC48基因分为3组进化分支,各组内基因结构和蛋白序列保守,但各组间差异较大,可能存在功能差异;种内和种间共线性分析结果显示ZmCDC48基因共有7个重复事件,与水稻Oryza sativa的OsCDC48有12个同源基因对,与拟南芥Arabidopsis thaliana的AtCDC48无同源基因对;顺式作用元件、组织和逆境表达模式分析显示ZmCDC48基因可能参与玉米生长发育和逆境响应过程;互作蛋白预测的结果显示ZmCDC48蛋白可能通过与核蛋白定位蛋白4(NPL4)家族、泛素融合降解(UFD1)家族、含泛素调节X(UBX)结构域蛋白、卵巢肿瘤(OTU)样蛋白等互作,参与玉米生长发育、蛋白质降解和免疫过程。

关键词(KeyWords): 玉米;基因家族;生物信息学;表达分析;

基金项目(Foundation): 国家自然科学基金项目(41800332)

作者(Author): 高小妹,李焰榕,田笑,裴腊明

DOI: 10.13349/j.cnki.jdxbn.20240428.001

参考文献(References):

[1] MOIR D,STEWART S E,OSMOND B C,et al.Cold-sensitive cell-division-cycle mutants of yeast:isolation,properties,and pseudoreversion studies[J].Genetics,1982,100(4):547.

[2] ERDMANN R,WIEBEL F F,FLESSAU A,et al.PAS1:a yeast gene required for peroxisome biogenesis,encodes a member of a novel family of putative ATPases[J].Cell,1991,64(3):499.

[3] KOLLER K J,BROWNSTEIN M J.Use of a cDNA clone to identify a supposed precursor protein containing valosin[J].Nature,1987,325(6104):542.

[4] ERZBERGER J P,BERGER J M.Evolutionary relationships and structural mechanisms of AAA+ proteins[J].Annual Review of Biophysics and Biomolecular Structure,2006,35(1):93.

[5] STOLZ A,HILT W,BUCHBERGER A,et al.CDC48:a power machine in protein degradation[J].Trends in Biochemical Sciences,2011,36(10):515.

[6] BARTHELME D,SAUER R T.Identification of the CDC48·20S proteasome as an ancient AAA+ proteolytic machine[J].Science,2012,337(6096):843.

[7] FEILER H S,DESPREZ T,SANTONI V,et al.The higher plant Arabidopsis thaliana encodes a functional CDC48 homologue which is highly expressed in dividing and expanding cells[J].The EMBO Journal,1995,14(22):5626.

[8] COPELAND C,WOLOSHEN V,HUANG Y,et al.AtCDC48A is involved in the turnover of an NLR immune receptor[J].The Plant Journal,2016,88(2):294.

[9] YANG L H,ZHU M Y,YANG Y,et al.CDC48B facilitates the intercellular trafficking of SHORT-ROOT during radial patterning in roots[J].Journal of Integrative Plant Biology,2022,64(4):843.

[10] PARK S,RANCOUR D M,BEDNAREK S Y.In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division,expansion,and differentiation[J].Plant Physiology,2008,148(1):246.

[11] BAE H,CHOI S M,YANG S W,et al.Suppression of the ER-localized AAA ATPase NgCDC48 inhibits tobacco growth and development[J].Molecules and Cells,2009,28(1):57.

[12] HUANG Q N,SHI Y F,ZHANG X B,et al.Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice[J].Journal of Integrative Plant Biology,2016,58(1):12.

[13] RANCOUR D M,DICKEY C E,PARK S,et al.Characterization of AtCDC48:evidence for multiple membrane fusion mechanisms at the plane of cell division in plants[J].Plant Physiology,2002,130(3):1241.

[14] SHI L,ZHANG X B,SHI Y F,et al.OsCDC48/48E complex is required for plant survival in rice (Oryza sativa L.)[J].Plant Molecular Biology,2019,100(1/2):163.

[15] RIENTIES I M,VINK J,BORST J W,et al.The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48,the 14-3-3 protein GF14λ and the PP2C phosphatase KAPP[J].Planta,2005,221(3):394.

[16] GALLOIS J L,DROUAUD J,LéCUREUIL A,et al.Functional characterization of the plant ubiquitin regulatory X (UBX) domain-containing protein AtPUX7 in Arabidopsis thaliana[J].Gene,2013,526(2):299.

[17] MéRAI Z,CHUMAK N,GARCíA-AGUILAR M,et al.The AAA-ATPase molecular chaperone CDC48/p97 disassembles sumoylated centromeres,decondenses heterochromatin,and activates ribosomal RNA genes[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(45):16166.

[18] ROSNOBLET C,BèGUE H,BLANCHARD C,et al.Functional characterization of the chaperon-like protein CDC48 in cryptogein-induced immune response in tobacco[J].Plant,Cell & Environment,2017,40(4):491.

[19] NIEHL A,AMARI K,GEREIGE D,et al.Control of Tobacco mosaic virus movement protein fate by CELL-DIVISION-CYCLE protein48[J].Plant Physiology,2012,160(4):2093.

[20] RAJA K V,SEKHAR K M,REDDY V D,et al.Activation of CDC48 and acetyltransferase encoding genes contributes to enhanced abiotic stress tolerance and improved productivity traits in rice[J].Plant Physiology and Biochemistry,2021,168:329.

[21] WOODHOUSE M R,CANNON E K,PORTWOOD J L,et al.A pan-genomic approach to genome databases using maize as a model system[J].BMC Plant Biology,2021,21:385.

[22] BERARDINI T Z,REISER L,LI D,et al.The Arabidopsis information resource:making and mining the “gold standard” annotated reference plant genome[J].Genesis,2015,53(8):477.

[23] GOODSTEIN D M,SHU S Q,HOWSON R,et al.Phytozome:a comparative platform for green plant genomics[J].Nucleic Acids Research,2012,40(D1):D1178.

[24] ALTSCHUL S F,GISH W,MILLER W,et al.Basic local alignment search tool[J].Journal of Molecular Biology,1990,215(3):403.

[25] PAYSAN-LAFOSSE T,BLUM M,CHUGURANSKY S,et al.InterPro in 2022[J].Nucleic Acids Research,2023,51(D1):D418.

[26] CHOU K C,SHEN H B.Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J].PLoS One,2010,5(6):e11335.

[27] KUMAR S,STECHER G,LI M,et al.MEGA X:molecular evolutionary genetics analysis across computing platforms[J].Molecular Biology and Evolution,2018,35(6):1547.

[28] CHEN C J,CHEN H,ZHANG Y,et al.TBtools:an integrative toolkit developed for interactive analyses of big biological data[J].Molecular Plant,2020,13(8):1194.

[29] HU B,JIN J,GUO A Y,et al.GSDS 2.0:an upgraded gene feature visualization server[J].Bioinformatics,2015,31(8):1296.

[30] BAILEY T L,ELKAN C.Fitting a mixture model by expectation maximization to discover motifs in biopolymers[C]//Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology,August 15-17,1994,Stanford,CA,USA.Washington,D.C.:USDOE,1994:28.

[31] YATES A D,ALLEN J,AMODE R M,et al.Ensembl Genomes 2022:an expanding genome resource for non-vertebrates[J].Nucleic Acids Research,2022,50(D1):D996.

[32] LESCOT M,DéHAIS P,THIJS G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Research,2002,30(1):325.

[33] SZKLARCZYK D,KIRSCH R,KOUTROULI M,et al.The STRING database in 2023:protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J].Nucleic Acids Research,2023,51(D1):D638.

[34] 刘超.玉米分生组织发育中受体蛋白FEA3介导的信号通路及下游信号分子的鉴定[D].济南:山东大学,2022:13-14.

[35] YE Y H,TANG W K,ZHANG T,et al.A mighty “protein extractor” of the cell:structure and function of the p97/CDC48 ATPase[J].Frontiers in Molecular Biosciences,2017,4:39.

[36] HURST L D.The Ka/Ks ratio:diagnosing the form of sequence evolution[J].TRENDS in Genetics,2002,18(9):486.

[37] MüLLER J,PIFFANELLI P,DEVOTO A,et al.Conserved ERAD-like quality control of a plant polytopic membrane protein[J].The Plant Cell,2005,17(1):149.

[38] MARSHALL R S,JOLLIFFE N A,CERIOTTI A,et al.The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells[J].Journal of Biological Chemistry,2008,283(23):15869.

[39] LI J L,YUAN J R,LI Y H,et al.The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants[J].Cell Reports,2022,39(2):110664.

[40] XU G X,GUO C C,SHAN H Y,et al.Divergence of duplicate genes in exon-intron structure[J].Proceedings of the National Academy of Sciences,2012,109(4):1187.

[41] KRETZSCHMAR F K,MENGEL L A,MüLLER A O,et al.PUX10 is a lipid droplet-localized scaffold protein that interacts with CELL DIVISION CYCLE48 and is involved in the degradation of lipid droplet proteins[J].The Plant Cell,2018,30(9):2137.

[42] DERUYFFELAERE C,PURKRTOVA Z,BOUCHEZ I,et al.PUX10 is a CDC48A adaptor protein that regulates the extraction of ubiquitinated oleosins from seed lipid droplets in Arabidopsis[J].The Plant Cell,2018,30(9):2116.

[43] CHANDRAN D,TAI Y C,HATHER G,et al.Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis[J].Plant Physiology,2009,149(3):1435.

[44] KEREN I,LACROIX B,KOHRMAN A,et al.Histone deubi-quitinase OTU1 epigenetically regulates DA1 and DA2,which control Arabidopsis seed and organ size[J].iScience,2020,23(3):100948.

[45] ZANG Y P,GONG Y Y,WANG Q,et al.Arabidopsis OTU1,a linkage-specific deubiquitinase,is required for endoplasmic reticulum-associated protein degradation[J].The Plant Journal,2020,101(1):141.