参考文献(References):
[1] MOIR D,STEWART S E,OSMOND B C,et al.Cold-sensitive cell-division-cycle mutants of yeast:isolation,properties,and pseudoreversion studies[J].Genetics,1982,100(4):547.
[2] ERDMANN R,WIEBEL F F,FLESSAU A,et al.PAS1:a yeast gene required for peroxisome biogenesis,encodes a member of a novel family of putative ATPases[J].Cell,1991,64(3):499.
[3] KOLLER K J,BROWNSTEIN M J.Use of a cDNA clone to identify a supposed precursor protein containing valosin[J].Nature,1987,325(6104):542.
[4] ERZBERGER J P,BERGER J M.Evolutionary relationships and structural mechanisms of AAA+ proteins[J].Annual Review of Biophysics and Biomolecular Structure,2006,35(1):93.
[5] STOLZ A,HILT W,BUCHBERGER A,et al.CDC48:a power machine in protein degradation[J].Trends in Biochemical Sciences,2011,36(10):515.
[6] BARTHELME D,SAUER R T.Identification of the CDC48·20S proteasome as an ancient AAA+ proteolytic machine[J].Science,2012,337(6096):843.
[7] FEILER H S,DESPREZ T,SANTONI V,et al.The higher plant Arabidopsis thaliana encodes a functional CDC48 homologue which is highly expressed in dividing and expanding cells[J].The EMBO Journal,1995,14(22):5626.
[8] COPELAND C,WOLOSHEN V,HUANG Y,et al.AtCDC48A is involved in the turnover of an NLR immune receptor[J].The Plant Journal,2016,88(2):294.
[9] YANG L H,ZHU M Y,YANG Y,et al.CDC48B facilitates the intercellular trafficking of SHORT-ROOT during radial patterning in roots[J].Journal of Integrative Plant Biology,2022,64(4):843.
[10] PARK S,RANCOUR D M,BEDNAREK S Y.In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division,expansion,and differentiation[J].Plant Physiology,2008,148(1):246.
[11] BAE H,CHOI S M,YANG S W,et al.Suppression of the ER-localized AAA ATPase NgCDC48 inhibits tobacco growth and development[J].Molecules and Cells,2009,28(1):57.
[12] HUANG Q N,SHI Y F,ZHANG X B,et al.Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice[J].Journal of Integrative Plant Biology,2016,58(1):12.
[13] RANCOUR D M,DICKEY C E,PARK S,et al.Characterization of AtCDC48:evidence for multiple membrane fusion mechanisms at the plane of cell division in plants[J].Plant Physiology,2002,130(3):1241.
[14] SHI L,ZHANG X B,SHI Y F,et al.OsCDC48/48E complex is required for plant survival in rice (Oryza sativa L.)[J].Plant Molecular Biology,2019,100(1/2):163.
[15] RIENTIES I M,VINK J,BORST J W,et al.The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48,the 14-3-3 protein GF14λ and the PP2C phosphatase KAPP[J].Planta,2005,221(3):394.
[16] GALLOIS J L,DROUAUD J,LéCUREUIL A,et al.Functional characterization of the plant ubiquitin regulatory X (UBX) domain-containing protein AtPUX7 in Arabidopsis thaliana[J].Gene,2013,526(2):299.
[17] MéRAI Z,CHUMAK N,GARCíA-AGUILAR M,et al.The AAA-ATPase molecular chaperone CDC48/p97 disassembles sumoylated centromeres,decondenses heterochromatin,and activates ribosomal RNA genes[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(45):16166.
[18] ROSNOBLET C,BèGUE H,BLANCHARD C,et al.Functional characterization of the chaperon-like protein CDC48 in cryptogein-induced immune response in tobacco[J].Plant,Cell & Environment,2017,40(4):491.
[19] NIEHL A,AMARI K,GEREIGE D,et al.Control of Tobacco mosaic virus movement protein fate by CELL-DIVISION-CYCLE protein48[J].Plant Physiology,2012,160(4):2093.
[20] RAJA K V,SEKHAR K M,REDDY V D,et al.Activation of CDC48 and acetyltransferase encoding genes contributes to enhanced abiotic stress tolerance and improved productivity traits in rice[J].Plant Physiology and Biochemistry,2021,168:329.
[21] WOODHOUSE M R,CANNON E K,PORTWOOD J L,et al.A pan-genomic approach to genome databases using maize as a model system[J].BMC Plant Biology,2021,21:385.
[22] BERARDINI T Z,REISER L,LI D,et al.The Arabidopsis information resource:making and mining the “gold standard” annotated reference plant genome[J].Genesis,2015,53(8):477.
[23] GOODSTEIN D M,SHU S Q,HOWSON R,et al.Phytozome:a comparative platform for green plant genomics[J].Nucleic Acids Research,2012,40(D1):D1178.
[24] ALTSCHUL S F,GISH W,MILLER W,et al.Basic local alignment search tool[J].Journal of Molecular Biology,1990,215(3):403.
[25] PAYSAN-LAFOSSE T,BLUM M,CHUGURANSKY S,et al.InterPro in 2022[J].Nucleic Acids Research,2023,51(D1):D418.
[26] CHOU K C,SHEN H B.Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J].PLoS One,2010,5(6):e11335.
[27] KUMAR S,STECHER G,LI M,et al.MEGA X:molecular evolutionary genetics analysis across computing platforms[J].Molecular Biology and Evolution,2018,35(6):1547.
[28] CHEN C J,CHEN H,ZHANG Y,et al.TBtools:an integrative toolkit developed for interactive analyses of big biological data[J].Molecular Plant,2020,13(8):1194.
[29] HU B,JIN J,GUO A Y,et al.GSDS 2.0:an upgraded gene feature visualization server[J].Bioinformatics,2015,31(8):1296.
[30] BAILEY T L,ELKAN C.Fitting a mixture model by expectation maximization to discover motifs in biopolymers[C]//Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology,August 15-17,1994,Stanford,CA,USA.Washington,D.C.:USDOE,1994:28.
[31] YATES A D,ALLEN J,AMODE R M,et al.Ensembl Genomes 2022:an expanding genome resource for non-vertebrates[J].Nucleic Acids Research,2022,50(D1):D996.
[32] LESCOT M,DéHAIS P,THIJS G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Research,2002,30(1):325.
[33] SZKLARCZYK D,KIRSCH R,KOUTROULI M,et al.The STRING database in 2023:protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J].Nucleic Acids Research,2023,51(D1):D638.
[34] 刘超.玉米分生组织发育中受体蛋白FEA3介导的信号通路及下游信号分子的鉴定[D].济南:山东大学,2022:13-14.
[35] YE Y H,TANG W K,ZHANG T,et al.A mighty “protein extractor” of the cell:structure and function of the p97/CDC48 ATPase[J].Frontiers in Molecular Biosciences,2017,4:39.
[36] HURST L D.The Ka/Ks ratio:diagnosing the form of sequence evolution[J].TRENDS in Genetics,2002,18(9):486.
[37] MüLLER J,PIFFANELLI P,DEVOTO A,et al.Conserved ERAD-like quality control of a plant polytopic membrane protein[J].The Plant Cell,2005,17(1):149.
[38] MARSHALL R S,JOLLIFFE N A,CERIOTTI A,et al.The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells[J].Journal of Biological Chemistry,2008,283(23):15869.
[39] LI J L,YUAN J R,LI Y H,et al.The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants[J].Cell Reports,2022,39(2):110664.
[40] XU G X,GUO C C,SHAN H Y,et al.Divergence of duplicate genes in exon-intron structure[J].Proceedings of the National Academy of Sciences,2012,109(4):1187.
[41] KRETZSCHMAR F K,MENGEL L A,MüLLER A O,et al.PUX10 is a lipid droplet-localized scaffold protein that interacts with CELL DIVISION CYCLE48 and is involved in the degradation of lipid droplet proteins[J].The Plant Cell,2018,30(9):2137.
[42] DERUYFFELAERE C,PURKRTOVA Z,BOUCHEZ I,et al.PUX10 is a CDC48A adaptor protein that regulates the extraction of ubiquitinated oleosins from seed lipid droplets in Arabidopsis[J].The Plant Cell,2018,30(9):2116.
[43] CHANDRAN D,TAI Y C,HATHER G,et al.Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis[J].Plant Physiology,2009,149(3):1435.
[44] KEREN I,LACROIX B,KOHRMAN A,et al.Histone deubi-quitinase OTU1 epigenetically regulates DA1 and DA2,which control Arabidopsis seed and organ size[J].iScience,2020,23(3):100948.
[45] ZANG Y P,GONG Y Y,WANG Q,et al.Arabidopsis OTU1,a linkage-specific deubiquitinase,is required for endoplasmic reticulum-associated protein degradation[J].The Plant Journal,2020,101(1):141.