2025年 01期

Multi-objective Task Scheduling Method Based on Edge Computing

摘要(Abstract):

针对智能工厂中的边缘算力资源调度问题,提出基于边缘计算的多目标任务调度模型;以最小化任务时延和任务能耗为目标函数,添加传输时延、计算时延、排队时延、迁移时延、传输能耗、计算能耗、迁移能耗等7项约束条件建模;为了解决多目标调度求解问题,提出基于任务紧急度的资源调度与分配算法,并设置迁移判断中服务器选择和任务排序方法;以占地面积为1.2×10~4 m~2的智能工厂的边云设备为实验环境,对比基于任务紧急度的资源调度与分配算法与随机接入资源分配算法、迭代资源分配算法的平均任务完成率。结果表明,基于任务紧急度的资源调度与分配算法的服务器任务完成率较其他2种算法分别提高48、 5个百分点,大多数服务器的任务丢弃率被降至2%~4%,并且对系统负载均衡等问题的处理效果显著。

关键词(KeyWords): 生产任务调度;多目标优化;边缘计算;边云协同;

基金项目(Foundation): 国家自然科学基金项目(12071407)

作者(Author): 谢燕瑜,陈兰荪

DOI: 10.13349/j.cnki.jdxbn.20241118.001

参考文献(References):

[1] SUN J,YIN L,ZOU M H,et al.Makespan-minimization workflow scheduling for complex networks with social groups in edge computing[J].Journal of Systems Architecture,2020,108:101799.

[2] MENG J Y,TAN H S,LI X Y,et al.Online deadline-aware task dispatching and scheduling in edge computing[J].IEEE Transactions on Parallel and Distributed Systems,2019,31(6):1271.

[3] 彭青蓝,夏云霓,郑万波,等.一种去中心化的在线边缘任务调度与资源分配方法[J].计算机学报,2022,45(7):1464.

[4] HAN Z H,TAN H S,LI X Y,et al.Ondisc:online latency-sensitive job dispatching and scheduling in heterogeneous edge-clouds[J].IEEE/ACM Transactions on Networking,2019,27(6):2475.

[5] 巨涛,王志强,刘帅,等.D3DQN-CAA:一种基于DRL的自适应边缘计算任务调度方法[J].湖南大学学报(自然科学版),2024,51(6):76.

[6] LUO S Q,CHEN X,WU Q,et al.HFEL:joint edge association and resource allocation for cost-efficient hierarchical federated edge learning[J].IEEE Transactions on Wireless Communications,2020,19(10):6535.

[7] 肖烨.面向智能工厂的边缘计算节点部署及节能技术研究[D].北京:北京邮电大学,2021:37.

[8] 狄筝,曹一凡,仇超,等.新型算力网络架构及其应用案例分析[J].计算机应用,2022,42(6):1656.

[9] ZENG L,LIU Q,SHEN S G,et al.Improved double deep Q network-based task scheduling algorithm in edge computing for make-span optimization[J].Tsinghua Science and Technology,2023,29(3):806.

[10] 张依琳,梁玉珠,尹沐君,等.移动边缘计算中计算卸载方案研究综述[J].计算机学报,2021,44(12):2406.

[11] FENG Y X,HONG Z X,LI Z W,et al.Integrated intelligent green scheduling of sustainable flexible workshop with edge computing considering uncertain machine state[J].Journal of Cleaner Production,2020,246:119070.

[12] PAN Z Y,HOU X H,XU H,et al.A hybrid manufacturing scheduling optimization strategy in collaborative edge computing[J].Evolutionary Intelligence,2022,17(2):1065.

[13] 刘泽宁,李凯,吴连涛,等.多层次算力网络中代价感知任务调度算法[J].计算机研究与发展,2020,57(9):1810.

[14] WANG X F,HAN Y W,LEUNG V C M,et al.Convergence of edge computing and deep learning:a comprehensive survey[J].IEEE Communications Surveys & Tutorials,2020,22(2):869.

[15] WANG J,LIU Y,REN S,et al.Edge computing-based real-time scheduling for digital twin flexible job shop with variable time window[J].Robotics and Computer:Integrated Manufacturing,2023,79:102435.

[16] TANG M,WONG V W S.Deep reinforcement learning for task offloading in mobile edge computing systems[J].IEEE Transactions on Mobile Computing,2020,21(6):1985.

[17] YEGANEH S,SANGAR A B,AZIZI S.A novel Q-learning-based hybrid algorithm for the optimal offloading and scheduling in mobile edge computing environments[J].Journal of Network and Computer Applications,2023,214:103617.

[18] ZHOU M T,REN T F,DAI Z M,et al.Task scheduling and resource balancing of fog computing in smart factory[J].Mobile Networks and Applications,2023,28:19.

[19] CHEN Y W,YOU J Z.Effective radio resource allocation for IoT random access by using reinforcement learning[J].Journal of Internet Technology,2022,23(5):1070-1071.

[20] FAN Y Q,WANG L F,WU W L,et al.Cloud/edge computing resource allocation and pricing for mobile blockchain:an iterative greedy and search approach[J].IEEE Transactions on Computational Social Systems,2021,8(2):461-462.