2025年 01期

Preparation and Motion Performance of Platinum-Transition Oxide-based Janus Micromotors

摘要(Abstract):

为了改善化学驱动微马达的运动性能,以铂基双面神微马达为基础,通过引入过渡金属氧化物(氧化铜、氧化钨)与铂形成异质结,构建铂-过渡金属氧化物-聚苯乙烯双面神微马达,表征微马达的结构和元素价态,并对其在过氧化氢含量不同时的运动性能进行研究。结果表明,当过氧化氢的质量分数为15%时,铂-氧化钨-聚苯乙烯双面神微马达的平均速度达到43μm/s,运动性能显著改善;铂基双面神微马达的运动速度与形成异质结的铂与过渡金属氧化物之间的功函数差导致的电子迁移有关,并与功函数差值成正比。

关键词(KeyWords): 微马达;化学驱动;异质结;过渡氧化物;

基金项目(Foundation):国家自然科学基金项目(21975195)

作者(Author): 张铭辉,魏敬武,许蕾蕾,官建国

DOI: 10.13349/j.cnki.jdxbn.20241125.001

参考文献(References):

[1] DREYFUS R,BAUDRY J,ROPER M L,et al.Microscopic artificial swimmers[J].Nature,2005,437(7060):862.

[2] XU D D,WANG Y,LIANG C Y,et al.Self-propelled micro/nanomotors for on-demand biomedical cargo transportation[J].Small,2020,16(27):1902464.

[3] XU C,WANG S H,WANG H,et al.Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy[J].Nano Letters,2021,21(5):1982.

[4] YáNEZ-SEDE?O P,CAMPUZANO S,PINGARRóN J M.Janus particles for (bio)sensing[J].Applied Materials Today,2017,9:276.

[5] PACHECO M,JURADO-SANCHEZ B,ESCARPA A.Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors[J].Analytical Chemistry,2018,90(4):2912.

[6] GAO W,WANG J.The environmental impact of micro/nanomachines:a review[J].ACS Nano,2014,8(4):3170.

[7] GUIX M,OROZCO J,GARCíA M,et al.Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil[J].ACS Nano,2012,6(5):4445.

[8] PAXTON W F,KISTLER K C,OLMEDA C C,et al.Catalytic nanomotors:autonomous movement of striped nanorods[J].Journal of the American Chemical Society,2004,126(41):13424.

[9] GAO W,PEI A,WANG J.Water-driven micromotors[J].ACS Nano,2012,6(9):8432.

[10] SOLOVEV A A,MEI Y,BERM■DEZ URE?A E,et al.Catalytic microtubular jet engines self-propelled by accumulated gas bubbles[J].Small,2009,5(14):1688.

[11] GAO W,SATTAYASAMITSATHIT S,OROZCO J,et al.Highly efficient catalytic microengines:template electrosynthesis of poly-aniline/platinum microtubes[J].Journal of the American Chemical Society,2011,133(31):11862.

[12] ZHANG J,ZHENG X,CUI H H,et al.The self-propulsion of the spherical Pt-SiO2 Janus micro-motor[J].Micromachines,2017,8(4):123.

[13] ZHANG Y,YUAN J S,ZHAO L,et al.Boosting exciton dissociation and charge transfer in P-doped 2D porous g-C3N4 for enhanced H2 production and molecular oxygen activation[J].Ceramics International,2022,48(3):4031.

[14] ZHANG J H,LIN Y,LIU L J.Electron transfer in heterojunction catalysts[J].Physical Chemistry Chemical Physics,2023,25(10):7106.

[15] LYU X L,CHEN J Y,LIU J Y,et al.Reversing a platinum micromotor by introducing platinum oxide[J].Angewandte Chemie,2022,61(24):e202201018.

[16] SAYED M,YU J G,LIU G,et al.Non-noble plasmonic metal-based photocatalysts[J].Chemical Reviews,2022,122(11):10484.

[17] HONG J W,WI D H,LEE S U,et al.Metal-semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis[J].Journal of the American Chemical Society,2016,138(48):15766.

[18] FU Y S,LI J,LI J G.Metal/semiconductor nanocomposites for photocatalysis:fundamentals,structures,applications and pro-perties[J].Nanomaterials,2019,9(3):359.

[19] LIU Y,GUO J,ZHU E B,et al.Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions[J].Nature,2018,557(7707):696.

[20] BROOKS A M,TASINKEVYCH M,SABRINA S,et al.Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis[J].Nature Communications,2019,10(1):495.

[21] ZHOU J,DOU Y B,HE T,et al.Revealing the effect of anion-tuning in bimetallic chalcogenides on electrocatalytic overall water splitting[J].Nano Research,2021,14:4548.