2025年 02期

Preparation and Performance of Ion-selective Membranes for Sodium and Chloride Ions


摘要(Abstract):

为了提高离子选择膜对1价离子的选择性及渗透率,分别以聚偏氟乙烯(PVDF)、聚乙烯醇(PVA)和壳聚糖(CS)为膜材料,以3-(脲基-4-甲氧基苯基)丙基三乙氧基硅烷(UPTS)为功能性材料,采用共混法制备具有Na~+和Cl~-选择性的离子选择膜,采用扫描电子显微镜、离子电导率、离子渗透率表征离子选择膜的结构及性能,考察膜材料种类、 UPTS用量及外加电场作用对Na~+和Cl~-的分离效果。结果表明:当UPTS的质量分数为1%且PVDF和PVA混合作为膜材料制备离子选择膜时,25 h内分离相Na~+、 K~+、 Li~+混合溶液的电导率最高,达到779μS/cm,膜对Na~+的渗透率达到0.004 7 cm~2/h;而分离相Ca~(2+)、 Mg~(2+)混合溶液的电导率仅为4μS/cm。当采用PVDF和PVA混合作为膜材料且UPTS的质量分数为2%制备离子选择膜时,25 h内分离相Na~+、 K~+、 Li~+混合溶液的电导率达到1 335.2μS/cm,膜对Na~+的渗透率达到0.01 cm~2/h;分离相Cl~-、 SO_4~(2-)混合溶液的电导率达到533.0μS/cm,膜对Cl~-的渗透率达到0.001 5 cm~2/h。在外电场作用下,25 h内经离子选择膜分离的Na~+、 K~+、 Li~+混合溶液的电导率达到4 532μS/cm,膜对Na~+的渗透率达到0.032 cm~2/h;分离相Cl~-、 SO_4~(2-)混合溶液的电导率达到3 521μS/cm,且对Cl~-的渗透率达到0.013 cm~2/h。

关键词(KeyWords):离子选择膜;外加电场;电导率;渗透率

基金项目(Foundation):国家自然科学基金项目(51979064)

作者(Author): 马衍栋,张立卿,刘正球

DOI: 10.13349/j.cnki.jdxbn.20240508.001

参考文献(References):

[1] WANG Q Y,WANG Y Y,HUANG Y X,et al.Polyethyleneimine (PEI) based positively charged thin film composite polyamide (TFC-PA) nanofiltration (NF) membranes for effective Mg2+/Li+ separation[J].Desalination,2023,565:116814.

[2] XU P,GUAN K C,CHIAO Y H,et al.Fine-tuning polyamide nanofiltration membrane for ultrahigh separation selectivity of Mg2+ and Li+[J].Journal of Membrane Science,2023,688:122133.

[3] CHEN K,LI F Y,WEI T,et al.An interlayer-based positive charge compensation strategy for the preparation of highly selective Mg2+/Li+ separation nanofiltration membranes[J].Journal of Membrane Science,2023,684:121882.

[4] 赵国珂,张杨,刘轶群.膜法分离一/二价阳离子的研究进展[J].化工进展,2024,43(3):1363.

[5] LI Z C,ZHENG Y,GU T R,et al.Covalent organic framework membrane with sub-nano pores for efficient desalination[J].Journal of Membrane Science,2023,675:121551.

[6] SHENG F M,WU B,LI X Y,et al.Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels[J].Advanced Materials,2021,33(44):2104404.

[7] XIN W W,FU J R,QIAN Y C,et al.Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving[J].Nature Communications,2022,13:1701.

[8] ZUO P P,YE C C,JIAO Z R,et al.Near-frictionless ion transport within triazine framework membranes[J].Nature,2023,617:299.

[9] 齐帅伟.基于螺旋结构的高选择性的仿生离子通道的构筑及研究[D].长春:吉林大学,2021.

[10] LI J P,DU L H,KONG X,et al.Designing artificial ion channels with strict K+/Na+ selectivity toward the-next-generation electric-eel-mimetic ionic power generation[J].National Science Review,2023,10(12):193.

[11] YANG F D,LI L,HUA J Y,et al.Electrospun nanofiber membrane of dibenzo 14-crown-4-ether polyimide for efficient selective lithium recovery from discarded lithium-ion batteries[J].Separation and Purification Technology,2024,334:126018.

[12] 张信信,王丽华,贠延滨.自组装杂化离子通道膜的构筑及阳离子传输机制[J].化学学报,2012,70 (2):170.

[13] 刘育,尤长城,张衡益.超分子化学:合成受体的分子识别与组装[M].天津:南开大学出版社,2001.

[14] 王勇.可选择性识别重金属离子的肟类化合物的合成[J].合成化学,2024(4):360.

[15] WANG H J,ZHAI Y M,LI Y,et al.Covalent organic framework membranes for efficient separation of monovalent cations[J].Nature Communications,2022,13(1):7123.

[16] PANG S C,DAI L H,YI Z Y,et al.2D nanofluidic vermiculite membranes with self-confinement channels and recognition sites for ultrafast lithium ion-selective transport[J].Journal of Membrane Science,2023,687:122054.

[17] ZHU Q,LIU Y H,ZUO P P,et al.An isoporous ion exchange membrane for selective Na+ transport[J].Journal of Membrane Science,2022,659:120805.