2025年 02期

Influences of Polyvinyl Alcohol Fiber Contents and Iron Tailings Sand Substitution Rates on Compressive Performances of Concrete


摘要(Abstract):

为了阐明影响广泛分布于中国西北部与南部边疆地区的沙漠砂与砖红壤力学性能的关键参数,利用HAS土壤固化剂固化改性沙漠砂与砖红壤的力学性能,通过无侧限抗压试验研究不同含水率和密实度时HAS土壤固化剂掺量对沙漠砂与砖红壤无侧限抗压强度的影响。结果表明:沙漠砂与砖红壤的无侧限抗压强度均随着密实度的增大而增加,随着含水率的增大而先增大后减小;当沙漠砂的含水率、密实度分别为12%、 100.0%时,沙漠砂的无侧限抗压强度为0.091 MPa,比未改变含水率与密实度的沙漠砂的无侧限抗压强度增大约97.4%;当固化改性沙漠砂的HAS土壤固化剂的质量分数为4%时,沙漠砂的无侧限抗压强度可达到极大值0.125 MPa,比未掺加HAS土壤固化剂的沙漠砂的无侧限抗压强度增大37.4%,沙漠砂无侧限抗压强度取得极大值的含水率、密实度、掺加HAS土壤固化剂的质量分数的最优组合为12%、 100.0%、 4%;当砖红壤的含水率、密实度分别为20%、 100.0%时,砖红壤的无侧限抗压强度为0.243 MPa,比改变含水率与密实度的砖红壤的无侧限抗压强度增大约294%;当固化改性砖红壤的HAS土壤固化剂的质量分数为5%时,砖红壤的无侧限抗压强度可达到极大值0.303 MPa,比未掺加HAS土壤固化剂的砖红壤的无侧限抗压强度增大24.6%,砖红壤无侧限抗压强度取得极大值的含水率、密实度、掺加HAS土壤固化剂的质量分数的最优组合为20%、 100.0%、 5%。

关键词(KeyWords):纤维增强混凝土;抗压性能;铁尾矿砂;替代率;聚乙烯醇纤维

基金项目(Foundation):国家自然科学基金项目(52108214);; 山东省住房城乡建设科技计划项目(2020-K5-18)

作者(Author): 郎文丽,谢群,惠婧,赵鹏

DOI: 10.13349/j.cnki.jdxbn.20250117.001

参考文献(References):

[1] 金佳旭,王思维,冀文明,等.尾矿砂膏体充填材料工作与力学性能研究[J].非金属矿,2017,40(2):32.

[2] 蔡基伟,封孝信,赵丽,等.铁尾矿砂混凝土的泌水特性[J].武汉理工大学学报,2009,31(7):88.

[3] 李萌,孟祥荫,李涛,等.铁尾矿砂再生骨料混凝土力学性能研究[J].混凝土,2020(3):101.

[4] 程和平,陆璐.铁尾矿砂掺量对混凝土力学性能、耐久性及水化特性的影响研究[J].金属矿山,2021(11):215.

[5] SHETTIMA A U,HUSSIN M W,AHMAD Y,et al.Evaluation of iron ore tailings as replacement for fine aggregate in concrete[J].Construction and Building Materials,2016,120:72.

[6] TIAN Z X,ZHAO Z H,DAI C Q,et al.Experimental study on the properties of concrete mixed with iron ore tailings[J].Advances in Materials Science and Engineering,2016,2016:8606505.

[7] 仝宵,王社良.铁尾矿砂再生骨料混凝土力学性能及微观结构分析[J].混凝土,2021,43(1) :91.

[8] 刘文燕,张友来,李绍纯,等.铁尾矿砂对机制砂混凝土性能的影响研究[J].混凝土与水泥制品,2020,40(12):84.

[9] 宁宝宽,徐永泽,崔琨,等.铁尾矿砂混凝土的应力-应变全曲线特性[J].沈阳工业大学学报,2021,43(5):573.

[10] ZHAO S J,FAN J J,SUN W.Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete[J].Construction and Building Materials,2014,50:540.

[11] JIANG Y F,WANG H,CHEN Y,et al.Preparations of composites of composite concretes using iron tailings as fine aggregates and their mechanical behavior[J].Material in Technology,2019,53(4):467.

[12] 王玉雅,韩守杰,韩欣,等.铁尾矿砂对C50混凝土力学性能的影响[J].新型建筑材料,2018,45(8):108.

[13] 韦立.PVA-ECC材料及ECC-混凝土界面早期力学性能及微观结构研究[D].扬州:扬州大学,2019.

[14] 吴建军,王玲.高强高模聚乙烯醇纤维断裂伸长率研究[J].合成纤维,2021,50(9):12.

[15] 戴丽,杨峰,周美容,等.纤维混凝土复合材料的制备及力学性能的研究[J].功能材料,2021,52 (12):12095.

[16] 银英姿,仇贝.聚乙烯醇纤维混凝土力学性能及早期开裂试验研究[J].硅酸盐通报,2019,38(2):454.

[17] ZHANG W F,GU X W,QIU J P,et al.Effects of iron ore tailings on the compressive strength and permeability of ultra-high performance concrete[J].Construction and Building Materials,2020,260:119917.

[18] XU H Y,SHAO Z M,WANG Z J,et al.Experimental study on mechanical properties of fiber reinforced concrete:effect of cellulose fiber,polyvinyl alcohol fiber and polyolefin fiber[J].Construction and Building Materials,2020,261:120610.

[19] 钱桂枫,高祥彪,钱春香.PVA纤维对混凝土力学性能的影响[J].混凝土与水泥制品,2010(3):52.

[20] WANG J Q,DAI Q L,SI R Z,et al.Investigation of properties and performances of polyvinyl alcohol (PVA) fiber-reinforced rubber concrete[J].Construction and Building Materials,2018,193:631.

[21] LI Q,CHEN J H,HU H X.The tensile and swelling behavior of cement-stabilized marine clay reinforced with short waste fibers[J].Marine Georesources & Geotechnology,2019,37(10):1236.

[22] 王圣怡,朱然,占羿箭.PVA纤维轻骨料混凝土的力学性能及抗压强度尺寸效应研究[J].混凝土与水泥制品,2022(6):46.

[23] ROMUALDI J P,MANDEL J A.Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement[J] ACI Materials Journal,1964,61(6):657.