参考文献(References):
[1] BORDES A,USUNIER N,GARCIA-DURáN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26:2787.
[2] CHEN X J,JIA S B,XIANG Y.A review:knowledge reasoning over knowledge graph[J].Expert Systems with Applications,2020,141:112948.
[3] 夏毅,兰明敬,陈晓慧,等.可解释的知识图谱推理方法综述[J].网络与信息安全学报,2022,8(5):1.
[4] 封皓君,段立,张碧莹.面向知识图谱的知识推理综述[J].计算机系统应用,2021,30(10):21.
[5] BAKHSHI M,NEMATBAKHSH M,MOHSENZADEH M,et al.SParseQA:sequential word reordering and parsing for answering complex natural language questions over knowledge graphs[J].Knowledge-based Systems,2022,235:107626.
[6] 苏瑜鸿.知识图谱中的知识推理技术研究[D].北京:北京邮电大学,2023:41-44.
[7] QIAO C,HU X.A neural knowledge graph evaluator:combining structural and semantic evidence of knowledge graphs for predicting supportive knowledge in scientific QA[J].Information Processing & Management,2020,57(6):102309.
[8] LECUE F.On the role of knowledge graphs in explainable AI[J].Semantic Web,2020,11(1):41.
[9] WANG Q,HAO Y S,CAO J.ADRL:an attention-based deep reinforcement learning framework for knowledge graph reasoning[J].Knowledge-based Systems,2020,197:105910.
[10] ZHANG J S,LIANG S,SHENG Y P,et al.Temporal know-ledge graph representation learning with local and global evolutions[J].Knowledge-based Systems,2022,251:109234.
[11] XIE Z W,ZHU R J,LIU J,et al.A time-aware relational graph attention model for temporal knowledge graph embedding[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2023,31:2246.
[12] ZHANG Q X,WENG X Y,ZHOU G Y,et al.ARL:an adaptive reinforcement learning framework for complex question answering over knowledge base[J].Information Processing & Management,2022,59(3):102933.
[13] ZHANG L S,KANG Z,SUN X X,et al.KCRec:knowledge-aware representation graph convolutional network for recommendation[J].Knowledge-based Systems,2021,230:107399.
[14] 姚思雨,赵天哲,王瑞杰,等.规则引导的知识图谱联合嵌入方法[J].计算机研究与发展,2020,57(12):2514.
[15] CHEN L,TANG X,CHEN W Q,et al.Dacha:a dual graph convolution based temporal knowledge graph representation learning method using historical relation[J].ACM Transactions on Knowledge Discovery from Data,2021,16(3):1.
[16] WANG S S,FU K,SUN X,et al.Hierarchical-aware relation rotational knowledge graph embedding for link prediction[J].Neurocomputing,2021,458:259.
[17] XIAO Y,ZHOU G Y,XIE Z W,et al.Learning dual disentangled representation with self-supervision for temporal knowledge graph reasoning[J].Information Processing & Management,2024,61(3):103618.
[18] ZHANG D,FENG W L,WU Z H,et al.CDRGN-SDE:cross-dimensional recurrent graph network with neural stochastic differential equation for temporal knowledge graph embedding[J].Expert Systems with Applications,2024,247:123295.
[19] JIA W,WANG X,SHAN J,et al.Sequence encoder-based spatiotemporal knowledge graph completion[J].Journal of Web Engineering,2022,21(6):1913.