2025年 02期

Preparation of Tungsten Oxide Based Memristors and Their Neural Synaptic Properties

摘要(Abstract):

为了实现忆阻器在神经网络中的应用,采用磁控溅射技术制备模拟型氧化钨忆阻器;在氧化铟锡导电玻璃衬底上依次生长氧化钨薄膜和银薄膜,将氧化钨作为阻变层,氧化铟锡作为底电极,银作为顶电极;采用扫描电子显微镜和系统数字源表表征制备的氧化钨忆阻器的结构、电学性能和导通机制。结果表明:制备的氧化钨忆阻器具有优异的突触性能,阻变机制由银导电细丝为主导;将制备的忆阻器用于神经网络仿真,准确率达到99.11%,与中央处理器的准确率99.31%相近,能够应用于神经形态的计算。

关键词(KeyWords):忆阻器;人工突触;磁控溅射;神经网络;神经形态计算

基金项目(Foundation):国家自然科学基金项目(62005095)

作者(Author): 邱志程,李阳

DOI: 10.13349/j.cnki.jdxbn.20240528.001

参考文献(References):

[1] WANG F Z.Beyond memristors:neuromorphic computing using meminductors[J].Micromachines,2023,14(2):486.

[2] DUAN X G,CAO Z L,GAO K K,et al.Memristor-based neuromorphic chips[J].Advanced Materials,2024:2310704.

[3] SUN B,CHEN Y Z,ZHOU G D,et al.Memristor-based artificial chips[J].ACS Nano,2024,18(1):14.

[4] AGUIRRE F,SEBASTIAN A,LE GALLO M,et al.Hardware implementation of memristor-based artificial neural networks[J].Nature Communications,2024,15(1):1974.

[5] MAKIOKA D,SHIOMI S,KIMURA M.Ga-Sn-O thin-film memristor and analog plasticity characteristic[J].IEEE Journal of the Electron Devices Society,2023,11:174.

[6] SHRIVASTAVA S,KEONG L B,PRATIK S,et al.Fully photon controlled synaptic memristor for neuro-inspired computing[J].Advanced Electronic Materials,2023,9(3):2201093.

[7] WANG L,WEI S T,XIE J H,et al.Artificial synapses based on an optical/electrical biomemristor[J].Nanomaterials,2023,13(23):3012.

[8] YANG C,SUN B,ZHOU G D,et al.Photoelectric memristor-based machine vision for artificial intelligence applications[J].ACS Materials Letters,2023,5(2):504.

[9] WANG D Y,XU J W,LI F,et al.A memristor-based learning engine for synaptic trace-based online learning[J].IEEE Transactions on Biomedical Circuits and Systems,2023,17(5):1153.

[10] CHAURASIYA R,SHIH L C,CHEN K T,et al.Emerging higher-order memristors for bio-realistic neuromorphic computing:a review[J].Materials Today,2023,68:356.

[11] WANG Y Q,WANG W X,ZHANG C W,et al.A Digital-analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing[J].ACS Applied Electronic Materials,2022,4(7):3525.

[12] YAN X B,ZHOU Z Y,ZHAO J H,et al.Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates[J].Nano Research,2018,11(3):1183.

[13] LI H F,GENG S Y Y,LIU T,et al.Synaptic and gradual conductance switching behaviors in CeO2/Nb-SrTiO3 heterojunction memristors for electrocardiogram signal recognition[J].ACS Applied Materials & Interfaces,2023,15(4):5456.

[14] LI C,BELKIN D,LI Y N,et al.Efficient and self-adaptive in-situ learning in multilayer memristor neural networks[J].Nature Communications,2018,9(1):2385.

[15] WANG S X,DONG X Q,XIONG Y X,et al.CsFAMAPbIBr photoelectric memristor based on ion-migration induced memristive behavior[J].Advanced Electronic Materials,2021,7(5):2100014.

[16] XIONG X Y,XIONG F,TIAN H,et al.Ultrathin anion conductors based memristor[J].Advanced Electronic Materials,2022,8(2):2100845.

[17] LIU Y,ZHOU X F,YAN H,et al.Robust memristive fiber for woven textile memristor[J].Advanced Functional Materials,2022,32(28):2201510.

[18] GRECA L G,LEHTONEN J,TARDY B L,et al.Biofabrication of multifunctional nanocellulosic 3D structures:a facile and customizable route[J].Materials Horizons,2018,5(3):408.

[19] KIM Y,KWON Y J,KWON D E,et al.Nociceptive memristor[J].Advanced Materials,2018,30(8):1704320.

[20] HAO H T,WANG M X,CAO Y L,et al.Boron-doped engineering for carbon quantum dots-based memristors with controllable memristance stability[J].Small Methods,2024:2301454.

[21] ZHONG Y N,WANG T,GAO X,et al.Synapse-like organic thin film memristors[J].Advanced Functional Materials,2018,28(22):1800854.

[22] WANG T Y,MENG J L,LI Q X,et al.Reconfigurable opto-electronic memristor for in-sensor computing applications[J].Nano Energy,2021,89:106291.

[23] ZHOU H B,LI S F,ANG K W,et al.Recent advances in in-memory computing:exploring memristor and memtransistor arrays with 2D materials[J].Nano-Micro Letters,2024,16(1):121.

[24] RYU J H,MAHATA C,KIM S.Long-term and short-term plasticity of Ta2O5/HfO2 memristor for hardware neuromorphic application[J].Journal of Alloys and Compounds,2021,850:156675.

[25] ZHOU L,YANG S W,DING G Q,et al.Tunable synaptic behavior realized in C3N composite based memristor[J].Nano Energy,2019,58:293.

[26] WANG Y C,ZHENG J W,SHANG Y Y,et al.LTP-LTD transformation of unipolar pulse voltage-driven zinc oxide memristors via TiO2 thin layer incorporation[J].Journal of Materials Chemistry C,2024,12(4):1281.

[27] LIU J,YANG H F,JI Y,et al.An electronic synaptic device based on HfO2 TiOx bilayer structure memristor with self-compliance and deep-RESET characteristics[J].Nanotechnology,2018,29(41):415205.

[28] ZHANG Y,WANG X P,FRIEDMAN E G.Memristor-based circuit design for multilayer neural networks[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2018,65(2):677.

[29] ZHOU W H,WEN S P,LIU Y,et al.Forgetting memristor based STDP learning circuit for neural networks[J].Neural Networks,2023,158:293.

[30] LIU J Q,LI Z H,TANG Y L,et al.3D Convolutional neural network based on memristor for video recognition[J].Pattern Recognition Letters,2020,130:116.

[31] ZHANG X M,LU J,WANG Z R,et al.Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks[J].Science Bulletin,2021,66(16):1624.