2025年 02期

Preparation of γ-Glutamyl Transferase Driving Janus-structured Nanomotors and Their Motion Behavior

摘要(Abstract):

为了研究化学驱动微纳米马达的自主运动行为,利用全溶液化学合成法制备γ-谷氨酰转肽酶驱动双面神纳米马达。利用选择性刻蚀和分步偶联法,制备一侧修饰羧基的双面神纳米金颗粒;利用碳二亚胺-N-羟基琥珀酰亚胺偶联技术,将γ-谷氨酰转肽酶选择性修饰在双面神纳米金颗粒一侧制得γ-谷氨酰转肽酶驱动双面神纳米马达,采用透射电子显微镜、场发射扫描电子显微镜和倒置暗场显微镜等表征该纳米马达的结构形貌、驱动性能和趋化性。结果表明:制备的γ-谷氨酰转肽酶驱动双面神纳米马达的直径为(90.0±5.3)nm,分散性良好;该纳米马达在谷胱甘肽水溶液中的运动呈现含量依赖性,当谷胱甘肽的浓度达到10 mmol/L时,扩散系数达到2.39μm~2/s;该纳米马达具有良好的离子耐受性,能在不同生物介质中高效驱动,并能高灵敏感知谷胱甘肽浓度梯度产生正趋化性,向谷胱甘肽高含量区域富集。

关键词(KeyWords):纳米马达;双面神结构;γ-谷氨酰转肽酶;谷胱甘肽;趋化作用

基金项目(Foundation):国家自然科学基金项目(22075222)

作者(Author): 裴子叶,邓雨莲,官建国,罗明

DOI: 10.13349/j.cnki.jdxbn.20250116.002

参考文献(References):

[1] NELSON B J,PANE S.Delivering drugs with microrobots[J].Science,2023,382(6675):1120.

[2] LIU T Y,XIE L,PRICE C H,et al.Controlled propulsion of micro/nanomotors:operational mechanisms,motion manipulation and potential biomedical applications[J].Chemical Society Reviews,2022,51(24):10083.

[3] PATINO T,ARQUE X,MESTRE R,et al.Fundamental aspects of enzyme-powered micro- and nanoswimmers[J].Accounts of Chemical Research,2018,51(11):2662.

[4] ARQUE X,PATINO T,SANCHEZ S.Enzyme-powered micro- and nano-motors:key parameters for an application-oriented design[J].Chemical Science,2022,13(32):9128.

[5] YUAN H,LIU X X,WANG L Y,et al.Fundamentals and applications of enzyme powered micro/nano-motors[J].Bioactive Materials,2021,6(6):1727.

[6] ZHAO X,GENTILE K,MOHAJERANI F,et al.Powering motion with enzymes[J].Accounts of Chemical Research,2018,51(10):2373.

[7] RUSSELL S M,ALBA-PATINO A,BORGES M,et al.Multifunctional motion-to-color Janus transducers for the rapid detection of sepsis biomarkers in whole blood[J].Biosensors & Bioelectronics,2019,140:111346.

[8] SUGAI N,NAKAI Y,MORITA Y,et al.Transparent protein microtubule motors with controllable velocity and biodegradability[J].ACS Applied Nano Materials,2018,1(7):3080.

[9] KUMAR B V V S P,PATIL A J,MANN S.Enzyme-powered motility in buoyant organoclay/DNA protocells[J].Nature Reviews Chemistry,2018,10(11):1154.

[10] YANG Z L,WANG L M,GAO Z X,et al.Ultrasmall enzyme-powered Janus nanomotor working in blood circulation system[J].ACS Nano,2023,17(6):6023.

[11] FENG Y Z,YUAN Y,WAN J S,et al.Self-adaptive enzyme-powered micromotors with switchable propulsion mechanism and motion directionality[J].Applied Physics Reviews,2021,8:011406.

[12] LUO M,LI S L,WAN J S,et al.Enhanced propulsion of urease-powered micromotors by multilayered assembly of ureases on Janus magnetic microparticles[J].Langmuir,2020,36:7005.

[13] JI Y X,LIN X K,WU Z G,et al.Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmers[J].Angewandte Chemie:International Edition,2019,58(35):12200.

[14] RUCINSKAITE G,THOMPSON S A,PATERSON S,et al.Enzyme-coated Janus nanoparticles that selectively bind cell receptors as a function of the concentration of glucose[J].Nanoscale,2017,9(17):5404.

[15] FU L H,WAN Y L,QI C,et al.Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy[J].Advanced Materials Interfaces,2021,33(7):e2006892.

[16] WANG J M,TOEBES B J,PLACHOKOVA A S,et al.Self-propelled PLGA micromotor with chemotactic response to inflammation[J].Advanced Healthcare Materials,2020,9(7):e1901710.

[17] XU D D,HU J,PAN X,et al.Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions[J].ACS Nano,2021,15(7):11543.

[18] JOSEPH A,CONTINI C,CECCHIN D,et al.Chemotactic synthetic vesicles design and applications in blood-brain barrier crossing[J].Science Advances,2017,3:e1700362.

[19] OHUNMA A,CHO E C,CAMARGO P H C,et al.A facile synthesis of asymmetric hybrid colloidal particles[J].Journal of the American Chemical Society,2009,131:1352.

[20] OHUNMA A,Cho E C,JIANG M,et al.Metal-polymer hybrid colloidal particles with an eccentric structure[J].Langmuir,2009,25(24):13880.

[21] YE Y C,TONG F,WANG S H,et al.Apoptotic tumor DNA activated nanomotor chemotaxis[J].Nano Letters,2021,21(19):8086.