2025年 03期

Incomplete Multi-view Clustering Algorthm Based on Adaptive Weighing View Reconstruction with Cosine Similarity


摘要(Abstract):

为了解决实际应用中多视图数据经常包含缺失或异常信息,以及现有不完全多视图聚类方法在优化数据相似性矩阵时未能充分表示原始数据相似性,增加计算复杂性并忽视视图间判别信息差异等问题,提出一种基于余弦相似自适应加权视图重构的不完全多视图聚类算法,通过引入局部保留重建项以实现对缺失视图的自然对齐,避免使用平均值填充缺失视图可能带来的负面影响。在初始化阶段,算法通过计算原始多视图空间中的余弦相似度增强原始多视图数据的流形结构保持能力,并在构建完整视图过程中采用自适应加权策略捕捉不同视图的重要性。在4个基准数据集中进行聚类实验,并与现有9种代表性算法的最优结果相比较。结果表明,所提算法的聚类精度、归一化互信息率和纯度的平均值分别提升了5.52%、 8.78%和4.77%,具有出色的不完全多视图聚类性能。

关键词(KeyWords):不完全多视图聚类;自适应加权;余弦相似性;流形结构;视图重构

基金项目(Foundation):国家自然科学基金项目(72471123,62172229);; 江苏省基础科学研究项目(24KJA630001)

作者(Author): 陈永泰,邱野,万鸣华,杨国为

DOI: 10.13349/j.cnki.jdxbn.20250313.002

参考文献(References):

[1] GUAN Z Y,ZHANG L J,PENG J Y,et al.Multi-view concept learning for data representation[J].IEEE Transactions on Knowledge and Data Engineering,2015,27(11):3016.

[2] GOLALIPOUR K,AKBARI E,HAMIDI S S,et al.From clustering to clustering ensemble selection:a review[J].Engineering Applications of Artificial Intelligence,2021,104:104388.

[3] 梁新彦,钱宇华,郭倩,等.多粒度融合驱动的超多视图分类方法[J].计算机研究与发展,2022,59(8):1653.

[4] BICKEL S,SCHEFFER T.Multi-view clustering[C]//Fourth IEEE International Conference on Data Mining (ICDM’04),November 01-04,2024,Brighton,England.New York:IEEE,2004:19.

[5] CHAO G Q,SUN S L,BI J B.A survey on multiview clustering[J].IEEE Transactions on Artificial Intelligence,2021,2(2):146.

[6] ZHAO J,XIE X J,XU X,et al.Multi-view learning overview:recent progress and new challenges[J].Information Fusion,2017,38:43.

[7] SUN S L.A survey of multi-view machine learning[J].Neural Computing and Applications,2013,23(7/8):2031.

[8] JACK C R,Jr,BERNSTEIN M A,FOX N C,et al.The Alzheimer’s disease neuroimaging initiative(ADNI):MRI methods[J].Journal of Magnetic Resonance Imaging,2008,27(4):685.

[9] YAN K,FANG X Z,XU Y,et al.Protein fold recognition based on multi-view modeling[J].Bioinformatics,2019,35(17):2982.

[10] BHADRA T,MALLIK S,BANDYOPADHYAY S.Identification of multiview gene modules using mutual information-based hypograph mining[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2019,49(6):1119.

[11] WEN J,ZHANG Z,FEI L K,et al.A survey on incomplete multiview clustering[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2023,53(2):1136.

[12] XU C,TAO D C,XU C.A survey on multi-view learning[EB/OL].(2013-04-20)[2024-06-01].https://doi.org/10.48550/arXiv.1304.5634.

[13] TRIVEDI A,RAI P,DAUMé H,et al.Multiview clustering with incomplete views[C]//Proceedings of International Conference on Neural Information Process System(NIPS2010):Machine Learning for Social Computing Workshop,December 11,2010,Whilster,Canada.San Diego:NeurIPS,2010:1.

[14] WANG H,ZONG L L,LIU B,et al.Spectral perturbation meets incomplete multi-view data[EB/OL].(2019-05-31)[2024-06-01].https://doi.org/10.48550/arXiv.1906.00098.

[15] ZHAO H D,LIU H F,FU Y.Incomplete multi-modal visual data grouping[C]//BREWKA G.IJCAI’16:Proceedings of the Twenty-fifth International Joint Conference on Artificial Intelligence.Menlo Park:AAAI Press,2016:2392-2398.

[16] HU M L,CHEN S C.Doubly aligned incomplete multi-view clustering[EB/OL].(2019-03-07)[2024-06-01].https://doi.org/10.48550/arXiv.1903.02785.

[17] WEN J,ZHANG Z,XU Y,et al.Unified embedding alignment with missing views inferring for incomplete multi-view clustering[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33(1):5393-5400.

[18] YIN J,SUN S L.Incomplete multi-view clustering with cosine similarity[J].Pattern Recognition,2022,123:108371.

[19] XU C,GUAN Z Y,ZHAO W,et al.Adversarial incomplete multi-view clustering[C]//KRAUS S.IJCAI’19:Proceedings of the 28th International Joint Conference on Artificial Intelligence.Menlo Park:AAAI Press,2019:3933.

[20] WANG Q Q,DING Z M,TAO Z Q,et al.Generative partial multi-view clustering[EB/OL].(2020-03-19)[2024-06-01].https://doi.org/10.48550/arXiv.2003.13088.

[21] YIN J,SUN S L.Incomplete multi-view clustering with reconstructed views[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(3):2671.

[22] SHAO W X,HE L F,YU P S.Multiple incomplete views cluster-ing via weighted nonnegative matrix factorization with L2,1 regularization[C]//APPICE A,RODRIGUES P P,SANTOS COSTA V,et al.Proceedings of the 2015th European Conference on Machine Learning and Knowledge Discovery in Databases:Volume Part I.Cham:Springer,2015:318.

[23] MA Z Q,WONG W K,ZHANG L Y.Binary multi-view clustering with spectral embedding[J].Neurocomputing,2023,557:126733.

[24] LI Y Q,NIE F P,HUANG H,et al.Large-scale multi-view spectral clustering via bipartite graph[J].Proceedings of the AAAI Conference on Artificial Intelligence,2015,29(1):2750.

[25] TANG C,LIU X W,ZHU X Z,et al.CGD:multi-view clustering via cross-view graph diffusion[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(4):5924.

[26] GREENE D,CUNNINGHAM P.Practical solutions to the problem of diagonal dominance in kernel document clustering[C]//COHEN W,MOORE,A.CML’06:Proceedings of the 23rd International Conference on Machine Learning.New York:Association for Computing Machinery,2006:377.

[27] QU Q,WANG Z,CHEN W.Robust subspace clustering based on latent low-rank representation with weighted schatten-p norm minimization[C]//KHANNA S,CAO J,BAI Q,et al.PRICAI 2022:Trends in Artificial Intelligence:Vol.13629.Cham:Springer Nature,2022:504.

[28] LI S Y,JIANG Y,ZHOU Z H.Partial multi-view clustering[J]//Proceedings of the AAAI Conference on Artificial Intelligence,2014,28(1):1968.

[29] HU M L,CHEN S C.One-pass incomplete multi-view clustering[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33(1):3838.

[30] WEN J,XU Y,LIU H.Incomplete multiview spectral clustering with adaptive graph learning[J].IEEE Transactions on Cybernetics,2020,50(4):1418.

[31] LI Z L,TANG C,ZHENG X,et al.High-order correlation preserved incomplete multi-view subspace clustering[J].IEEE Transactions on Image Processing,2022,31:2067.